RITU and the new separator at Jyväskylä J. Uusitalo, J. Sarén, M. Leino RITU and γ-groups University of Jyväskylä, Department of Physics.

Slides:



Advertisements
Similar presentations
HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction.
Advertisements

A New DA and TM Based Approach to Design Air-Core Magnets Shashikant Manikonda Taylor Model Methods VII, Dec 14 th -17 th, 2011, Key West, Florida.
4/29/20151Cosenors - BentleyOverview Physics of Proton-rich Nuclei in the UK Mike Bentley (Univ. of York, UK) Physics of Proton-rich Nuclei in the UK Mike.
Pete Jones University of Jyväskylä INTAG Workshop GSI, Germany May 2007 Status of digital electronics at JYFL Pete Jones Department of Physics University.
12 th January 2011 PRESPEC Decay Physics Workshop University of Brighton 2011 High-spin states feeding seniority isomers in the heaviest N=82 isotones.
The evolution of nuclear structure in light osmium isotopes; gamma ray spectroscopy of 163 Os and 165 Os Mark Drummond.
How to explore a system? Photons Electrons Atoms Electrons Photons Atoms.
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
A LaBr3 Fast Timing Array of NUSTAR detectors at JYFL
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
Beam dynamics meeting, 2007/05/14Lars Fröhlich, MPY Dark Current Transport at FLASH Start-to-end tracking simulation analysis of beam and dark current.
Zhihong Ye Hampton University Feb. 16 th 2010, APS Meeting, Washington DC Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E
Possible measurements with crystals in NA Test of single crystals for the SPS and LHC beam collimation.
Fragment Mass Analyzer Darek Seweryniak, ANL C. N. Davids et al., Nucl. Instrum. Meth., B 70, 358 (1992).
UNIVERSITY OF JYVÄSKYLÄ Lifetime measurements probing triple shape coexistence in 175 Au Tuomas Grahn Department of Physics University of Jyväskylä The.
March A. Chancé, J. Payet DAPNIA/SACM / Beta-beam ECFA/BENE Workshop The Decay Ring -First Design- A. Chancé, J.Payet CEA/DSM/DAPNIA/SACM.
SUPERB Separator for Unique Products of Experiments with Radioactive Beams Matt Amthor Bucknell University ReA12 Recoil Separator Workshop – July 12, 2014.
A Reconstruction Algorithm for a RICH detector for CLAS12 Ahmed El Alaoui RICH Workchop, Jefferson Lab, newport News, VA November th 2011.
Possible Spectrometer for eA Collider Seigo Kato Faculty of Science, Yamagata University, Yamagata , Japan Presented to the workshop "Rare-Isotope.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Paul Greenlees, Department of Physics, University of Jyväskylä, FinlandENAM’04, Callaway Gardens, Sept04 In-beam and decay spectroscopy of transfermium.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
The Overview of the ILC RTML Bunch Compressor Design Sergei Seletskiy LCWS 13 November, 2012.
Matching recipe and tracking for the final focus T. Asaka †, J. Resta López ‡ and F. Zimmermann † CERN, Geneve / SPring-8, Japan ‡ CERN, Geneve / University.
SHMS Optics Studies Tanja Horn JLab JLab Hall C meeting 18 January 2008.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
S. Belogurov, ITEP, Moscow CBM Collaboration meeting, Split, CBM beam pipe and integration inside the Magnet Status report Sergey Belogurov,
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
BEAM TRANSFER CHANNELS, BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS OF NICA ACCELERATOR COMPLEX Tuzikov A., JINR, Dubna, Russia.
Geant4 Simulation of the Beam Line for the HARP Experiment M.Gostkin, A.Jemtchougov, E.Rogalev (JINR, Dubna)
Tracking ions inside PRISMA E.Farnea INFN Sezione di Padova.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
The NSCL is funded in part by the National Science Foundation and Michigan State University. RIA R&D is funded in part by the U.S. Department of Energy.
Preliminary Design of Electron Beam line F. Velotti, C. Bracco, B. Goddard and M. Meddahi.
MEIC Detector and IR Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
SL/BI 16/05/1999DIPAC’99 -- JJ Gras -- CERN SL/BI -- Adaptive Optics for the LEP 2 SR Monitors G. Burtin, R.J. Colchester, G. Ferioli, J.J. Gras, R. Jung,
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
A realistic simulation of the AGATA Demonstrator +PRISMA Spectrometer Elif INCE, Istanbul University 7 th AGATA Week, July 2008.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
Accelerator Laboratory, Physics Department (JYFL) University of Jyväskylä P.O. Box 35 (YFL) FI Jyväskylä Finland MARA recoil-mass separator at JYFL.
Ancillary/Complementary detectors for the AD at LNL.
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
Simulation of Particle Trajectories for RIKEN Rare-RI Ring Nishina Center, RIKEN SUZUKI Hiroshi Nov. / 11 / 2011.
The Medium and High resolution mass separators for SPES facility
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
A.Lachaize CNRS/IN2P3 IPN Orsay
Jose Javier Valiente Dobón LNL (INFN)
▪ Issues after KOBRA review meeting
IF Separator Design of RAON
Large Booster and Collider Ring
On the ARIEL Pre-separator
Beam Injection and Extraction Scheme
Vamos + Exogam Spectrometer
Ion-Side Small Angle Detection Forward, Far-Forward, & Ultra-Forward
(Lawrence Berkeley National Laboratory)
Collider Ring Optics & Related Issues
Recent Highlights and Future Plans at VAMOS
MEBT1&2 design study for C-ADS
Presentation transcript:

RITU and the new separator at Jyväskylä J. Uusitalo, J. Sarén, M. Leino RITU and γ-groups University of Jyväskylä, Department of Physics

-Magnetic configuration Q v DQ h Q v -Maximum beam rigidity 2.2Tm - Bending radius 1.85 m - Angular acceptance 8 msr - measured with alpha source - Dispersion 10 mm/% of Bρ - Dipole bending angle 25 o - Total length 4.8 m RITU, Recoil Ion Transport Unit

40 Ar Lu —> 211 Ac + 4n E fr = 33 MeV q ave = 6.9 vert. acc. ± 26 mrad horiz. acc. ± 77 mrad Acceptance 8 msr

JUROGAM RITU GREAT

Nuclear Physics Group at DaresburyNuclear Physics Group at Daresbury, University of LiverpoolUniversity of Liverpool, Manchester UniversityManchester University, University of SurreyUniversity of Surrey, York UniversityYork University, Keele University MWPC PIN-diodes DSSSD Planar Ge Clover Ge TDR acquisition system

The GREAT detector system 2x 60mm x 40mm DSSD 28x 40mm x 40mm PIN Segmented planar Ge Compton-suppressed Ge clover Gas counters U.K. Universities & Daresbury Triggerless TDR DAQ system Presently at JYFL

NIMB 204, 138 (2003) T. Enqvist et.al., 112 Sn( 86 Kr, 3n) MeV 0, ± 26 mrad, 0, ± 1mm Dispersion 15 mm/%Bρ A gas-filled recoil separator plan

if Bρ difference 4 % between 195 Rn and beam 86 Kr, and ± 7 mrad for beam and ± 26 mrad for 195 Rn RITU QDQQ with 25 o dipole magnet DQQ with 50 o dipole magnet DQQ with 50 o dipole magnet, and B n = -4

The new JYFL vacuum mode separator Design, ion optics and Physics Matti Leino, Jan Sarén, Juha Uusitalo, RITU and GAMMA groups

Magnetic rigidity: Electric rigidity: Resolving power: Deflection angles in electric field: Universal: - Both electric and dipole fields are needed - Beam is dumped inside the first dipole (chamber) - Mass resolving power about 350 FWHM can be reached - Full energy beam suppression factor of can be expected Charged particle in electric and magnetic fields

DRS:Q1-Q2-Q3-WF1-WF2-Q4-Q5- Q6-S1-S2-MD1-Q7-Q8-Q9 (13.0 m) CARP: Q1-MD1-H1-H2-ED1-H3-Q2 CAMEL: Q1-Q2-ED1-S1-MD1-S2-ED2 HIRA: Q1-Q2-ED1-M1-MD1-ED2-Q3-Q4(8.6 m) JAERI-RMS:Q1-Q2-ED1-MD1-ED2-Q3-Q4-O1(9.4 m) FMA: Q1-Q2-ED1-MD1-ED2-Q3-Q4(8.2 m) EMMA:Q1-Q2-ED1-MD1-ED2-Q3-Q4(9.04 m) JYFL new:Q1-Q2-Q3-ED1-MD1 (6.74 m) Qquadrupole Ssextupole Hhexapole Mmultipole Ooctupole WFvelocity filter EDelectric dipole MDmagnetic dipole Mass separators all around the world: some trends

- Maximizing angular, mass and energy acceptance while minimizing geometric and chromatic aberrations. - The largest aberrations are (x|δ 2 ), (x|θδ) and (x|θ 2 ). These are minimized by adding a curvature to the magnetic dipole entrance and exit. - Higher order aberrations found to be negligible. Design principles and aberrations

Optical layout in floor coordinates

Angular focus in x- and y-directions X-direction, 5 angles: 0, ±15 and ±30 mrad Y-direction, 5 angles: 0, ±20 and ±40 mrad

Energy focus and mass dispersion in x-direction Energy deviation: 0, ±3.5 and 7.0 % Angles: 0 and ±30 mrad, Masses: 0 and ±1 % Energies: 0 and 7.0 % 3 different energies3 different angles3 different masses

FMAJYFL new - ConfigurationQQEDMDEDQQQQQEDMD - Horizontal magnification Vertical magnification M/Q dispersion mm/%8.1 mm/% - First order resolving power, mm beam spot -Solid angle acceptance 8 msr10 msr - Energy acceptance for central mass and angle +20 % - 15 %+20 % - 15 % - M/Q acceptance  4 %  7 % Main properties of the new separator compared to FMA

What kind of research work can be done were RITU separator is not feasible Probing the N  Z line up to 112 Ba - decay spectroscopy (proton and  -particle decay) at the 100 Sn region - rp-process - proton-neutron pairing interaction - mirror nuclei o study of isospin symmetry breaking o proton skins (N < Z nuclei) D. Joss - superdeformation and hyperdeformation (N  Z  40) Methods - focal plane detector system: o DSSSD, position sensitive gas counter (1 mm granularity) - Tracking o Ge-detectors - MWPC & IC o Z- identification - tape system - focal plane spectroscopy - , proton, , ,  -delayed protons and alphas - prompt and delayed coincidences - in-beam spectroscopy tagging with using focal plane measurables

Phase space correction

Mass separation at focal plane

X-deviations versus TOF can be seen in phase space corrected data -> time correction can be made to improve x-resolution

Simulation of electric field in deflector (code Poisson Superfish) - gap 14 cm - rounded edges - splitted anode - maximum voltage between plates is about 0.5 MV

Simulating particle trajectories in deflector field Simple modified Euler equation is used to trace particles in electric field. Real transfer matrix coefficients can be obtained from these simulations. This more realistic matrix can be used in optical simulations of the new separator. 100 MeV, 100 u, 26 e 200 MeV, 50 u, 21 e 92 Mo: 362 MeV, 92 u, 32 e 147 Tm: 222 MeV, 147 u, 37 e

JIono – ionoptical simulations, Jan Sarén Features (some are not implemented yet): both graphical and text interfaces uses GICO/GIOS transfer matrices adjustable aperture slits export/import data real particle parameters as input data (m, E, q) Multiple types of plots Windows and Linux