Hour Exam II Wednesday, March 15 7:00 – 9:00 pm 103 Mumford HallAQG, AQI AllenAQJ BlairAQF 150 Animal Science FisherAQB, AQC KoysAGD PearsonAQA conflict.

Slides:



Advertisements
Similar presentations
1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Advertisements

Electrolysis & Understanding Electrolytic Cells : When a non-spontaneous redox reaction is made to occur by putting electrical energy into the system.
(c) 2006, Mark Rosengarten Voltaic Cells  Produce electrical current using a spontaneous redox reaction  Used to make batteries!batteries  Materials.
Discovering Electrochemical Cells PGCC CHM 102 Sinex.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18.
What does this?. Have to do with this? NOTHING!!!
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Electron-Transfer Reactions Cu 2+ (aq) + Zn(s)  Cu(s) + Zn 2+ (aq)
ELECTROLYSIS. Compare and contrast voltaic (galvanic) and electrolytic cells Explain the operation of an electrolytic cell at the visual, particulate.
Electrochemistry The first of the BIG FOUR. Introduction of Terms  Electrochemistry- using chemical changes to produce an electric current or using electric.
Electrochemistry Chapter 19.
Predicting Spontaneous Reactions
Electrochemistry Ch. 17. Electrochemistry Generate current from a reaction –Spontaneous reaction –Battery Use current to induce reaction –Nonspontaneous.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
The End is in Site! Nernst and Electrolysis. Electrochemistry.
Electrochemistry and Oxidation – Reduction
Electrolysis. Drill What is the color of the following ion in solution? Nickel Ans: green Copper Ans: blue Cobalt Ans: pink Iron (II) Ans: light blue.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
“minimal” galvanic cells
Electrochemistry Applications of Redox. Review l Oxidation reduction reactions involve a transfer of electrons. l OIL- RIG l Oxidation Involves Loss l.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chemistry 100 – Chapter 20 Electrochemistry. Voltaic Cells.
Notes on Electrolytic Cells An electrolytic cell is a system of two inert (nonreactive) electrodes (C or Pt) and an electrolyte connected to a power supply.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Brown, LeMay Ch 20 AP Chemistry.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry. Table of Reduction Potentials Measured against the Standard Hydrogen Electrode.
 Deals with the relation of the flow of electric current to chemical changes and the conversion of chemical to electrical energy (Electrochemical Cell)
Electrochemistry - the Science of Oxidation-Reduction Reactions 1.Constructing electrochemical cells - sketching cells which carry out redox reaction -
Topic 19 Oxidation and reduction
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Electrolysis.
REDOX Part 2 - Electrochemistry Text Ch. 9 and 10.
Electrochemistry (Ch 11) 1. Define: a. galvanic (voltaic) cell b. electrolytic cell.
Intersection 13 Electrochemistry. Outline Ed’s Demos: hydrolysis of water, oxidation states of V, potato clock, Zn/Cu electrochemical cell Electrochemistry.
Galvanic Cell: Electrochemical cell in which chemical reactions are used to create spontaneous current (electron) flow.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
18.8 Electrolysis 2 Types of electrochemistry 1.Battery or Voltaic Cell – Purpose? 2.Electrolysis - forces a current through a cell to produce a chemical.
Determine the oxidation number for each atom in the following molecules 1.H 2 S 2.P 2 O 5 3.S 8 4.SCl 2 5.Na 2 SO 3 6. SO NaH 8.Cr 2 O SnBr.
Discovering Electrochemical Cells PGCC CHM 102 Sinex.
Electrolysis.  Running a galvanic cell backwards.  Put a voltage bigger than the cell potential on the wire and reverse the direction of the redox reaction.
Brain Warmup Half-Reaction ℰ ° (V) Ag + + e -  Ag 0.80 Cu e -  Cu 0.34 Zn e -  Zn-0.76 Al e -  Al-1.66 What is ℰ ° for each of the.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Electrochemistry Experiment 12. Oxidation – Reduction Reactions Consider the reaction of Copper wire and AgNO 3 (aq) AgNO 3 (aq) Ag(s) Cu(s)
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
The Electrolytic Cell. In the electrolytic cell, a nonspontaneous redox reaction is forced to occur by the use of a source of electricity. In the electrolytic.
Electrolysis 3.7 Electrolysis…. Electrolysis Use of electrical energy to produce chemical change...forcing a current through a cell to produce a chemical.
CHAPTER SIX(19) Electrochemistry. Chapter 6 / Electrochemistry Chapter Six Contains: 6.1 Redox Reactions 6.2 Galvanic Cells 6.3 Standard Reduction Potentials.
Electrochemistry.
Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g) 
Ch. 20: Electrochemistry Lecture 4: Electrolytic Cells & Faraday’s Law.
H.W. # 24 Study pp (sec ) Ans. ques. p. 883 # 93a,95c,97,104,105,
“minimal” galvanic cells
“minimal” galvanic cells
Electrochemistry.
Electrochemistry.
Chapter 20 Electrochemistry
Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g) 
Electrochemistry.
Chapter 20 Electrochemistry
Electrochemistry.
from a battery or other external energy source
Presentation transcript:

Hour Exam II Wednesday, March 15 7:00 – 9:00 pm 103 Mumford HallAQG, AQI AllenAQJ BlairAQF 150 Animal Science FisherAQB, AQC KoysAGD PearsonAQA conflict exam 4:30 – 6: Noyes Review session 7:00 – 9:00, Monday 124 Burrill Hall

“minimal” galvanic cells only need reactants Zn H+H+  o = 0.34 V Zn 2+ (aq) + 2e -  Zn(s)  o = V 2H + (aq) + 2e -  H 2 (g)  o = 0.00 V reduction b) oxidation Zn   Zn e -  = 0.76 V 2H + (aq)  0 =.76 V  = very large Q = a) oxidation Cu Cu 2+ (aq) + 2e -  Cu(s) + Zn (s)  Zn 2+ (aq) + H 2 (g) 0

Electrolytic Cells  cell > 0  cell < 0  G < 0 spontaneous galvanic cell  G > 0 non-spontaneous electrolytic cell 2 H 2(g)  G = -474 kJ redox reaction: O spontaneous H0 0 + O 2(g)  2 H 2 O (l)  1+  2-

Electrolytic Cells 2 H 2 O (l)  G = 474 kJ oxygen half-cell:H2OH2O H 2 O  O 2 a) oxidation b) reduction a) anode b) cathode 2+ 4 H e -  O2 O2 reaction  2 H 2(g) + O 2(g)

Electrolytic Cells 2 H 2 O (l)  2 H 2(g) + O 2(g)  G = 474 kJ hydrogen half-cell: H 2 O  H 2 H2O H2O reduction reactioncathode + 2e -  H2H2 + OH - 22

Electrolytic Cells 2 H 2 O oxidation: anode reduction: cathode 2( ) ____________________________________ 6 H 2 O 2 H 2 O   O2 O2 + 2 H 2 + 4H OH - O2O2 + 2 H 2  O2O2 + 4 H e - + 2e -  H2H2 + 2 OH -

Electrolysis of water oxidation reduction 2H 2 O  O 2 + 4H + + 4e - 4H 2 O + 4e -  2H 2 + 4OH - Pt electrodes battery + - e-e- e-e- anode cathode acid base 1 mol gas 2 mol gas

Electrolysis of water 2.5 amp Power source  current = chargemol e - mol product gram product current and time A(C/s) x s x 1mol e - 96,500 C x mol product mol e- x g product mol product 3.2 g O 2 amperes (A) = coulombs/sec (C/s)

Electrolysis of water chargemol e - mol product gram product current and time 2 H 2 O  O H e A, 3.2 g O 2 (C/s) x s 2.5 A g/mol 3.2 x mol e - C x mol O 2 mol e - mol O 2 x g O 2 = g O 2 1 mol e C

Electrolysis of water 2 H 2 O  O H e A, 3.2 g O g O 2 x 2.5 C x s s x 1 mol O 2 x 32 g O 2 4 mol e - x 1 mol O C = 1 mol e C = C s = s 1 min x 60 s 1 hr 60 min = 4.3 hr s

Electroplating Cu e -  Cu anodecathode oxidationreduction Cu (s) Cu 2+ (aq)  Cu 2+ (aq) + 2e -  Cu (s)  o = 0.34 V

Electroplating anodecathode oxidation reduction Cu (s)  Cu 2+ (aq) + 2e - Cu 2+ (aq) + 2e -  Cu (s) 0.75 A atomic mass of Cu = for 25 min.deposits 0.37 g Cu

Electroplating Cu 2+ (aq) + 2e -  Cu (s) 0.75 A for 25 min deposits 0.37 g Cu A (C) s x sx 1 mol e C x 1 mol Cu 2 mol e - x g Cu mol Cu

Electroplating 0.75(C) s x 25 min 0.37 g Cu = x 10 3 C x 10 3 C x 1 mol e C = 1.17 x mol e x mol e - x 1mol Cu 2mol e - =5.83 x mol Cu = 63.5 g mol 5.8x10 -3 mol Cu atomic mass Cu x 60s min

Electrolysis of salt solutions CuBr 2 Cu 2+ Br - +2e -  Cu 2  Br 2 + 2e H 2 O+2e -  H 2 +2OH H 2 O  O 2 +2H + +4e

Electrolysis of salt solutions CaI 2 Ca 2+ I-I- +2e -  Ca 2  I 2 + 2e H 2 O+2e -  H 2 +2OH H 2 O  O 2 +2H + +4e

Electrolysis of salt solutions NaCl Na + Cl - + e -  Na 2  Cl 2 + 2e H 2 O+2e -  H 2 +2OH H 2 O  O 2 +2H + +4e overvoltage