/faculteit technologie management Workflow Mining: Current Status and Future Directions Ana Karla A. de Medeiros, W.M.P van der Aalst and A.J.M.M. Weijters.

Slides:



Advertisements
Similar presentations
From Local Patterns to Global Models: Towards Domain Driven Educational Process Mining Nikola Trčka Mykola Pechenizkiy.
Advertisements

/faculteit technologie management /faculteit wiskunde en informatica PM-1 Process mining: Discovering Process Models from Event Logs Prof.dr.ir. Wil van.
On 1-soundness and Soundness of Workflow Nets Lu Ping, Hu Hao and Lü Jian Department of Computer Science Nanjing University
Jorge Muñoz-Gama Josep Carmona
A university for the world real R © 2009, Chapter 3 Advanced Synchronization Moe Wynn Wil van der Aalst Arthur ter Hofstede.
Sequential Patterns & Process Mining Current State of Research Edgar de Graaf LIACS.
1 Process Mining Seminars in Software and Services for the Information Society Rome, 2014, May the 5th Francesco Leotta Dipartimento di Ingegneria Informatica,
/faculteit technologie management 1 Process Mining: Organizational and Conformance Mining Algorithms Ana Karla Alves de Medeiros Ana Karla Alves de Medeiros.
/faculteit technologie management 1 Process Mining: Control-Flow Mining Algorithms Ana Karla Alves de Medeiros Ana Karla Alves de Medeiros Eindhoven University.
Process discovery: Inductive Miner
Aligning Event Logs And Declare Models for Conformance Checking Massimiliano de Leoni, Fabrizio Maggi Wil van der Aalst.
/faculteit technologie management PN-1 Petri nets refresher Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology, Faculty of Technology Management,
Block-Structured Process Discovery: Filtering Infrequent Behaviour Sander Leemans Dirk Fahland Wil van der Aalst Eindhoven University of Technology.
/faculteit technologie management Genetic Process Mining Ana Karla Medeiros Ton Weijters Wil van der Aalst Eindhoven University of Technology Department.
/faculteit technologie management CPN 2006 Modeling Business Processes with CPN R.S. Mans.
/faculteit technologie management Genetic Process Mining Ana Karla Alves de Medeiros Eindhoven University of Technology Department.
Process Mining in CSCW Systems All truths are easy to understand once they are discovered; the point is to discover them. Galileo Galilei ( )
Mining Social Networks Uncovering interaction patterns in business processes Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department.
1 Analysis of workflows a-priori and a-posteriori analysis Wil van der Aalst Eindhoven University of Technology Faculty of Technology Management Department.
/k soundness of free-choice workflow nets 1 of 10 Soundness of Free Choice Workflow Nets K.M. van Hee, M. Voorhoeve Eindhoven Univ. Tech.
Business Alignment Using Process Mining as a Tool for Delta Analysis Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department of Information.
/faculteit technologie management Dutch-Belgian Database Day 2007 The Challenges of Process Mining A.J.M.M. Weijters (and many others)
Process Mining: The next step in Business Process Management Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department of Information.
/faculteit technologie management Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance Wil van der Aalst.
Discovering Coordination Patterns using Process Mining Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department of Information and Technology.
/faculteit technologie management 1 Process Mining: General Introduction Ana Karla Alves de Medeiros Ana Karla Alves de Medeiros Eindhoven University of.
Boudewijn van Dongen June 22, 2004 /t Process Mining, the basics.
Process Mining: Discovering processes from event logs All truths are easy to understand once they are discovered; the point is to discover them. Galileo.
/faculteit technologie management Genetic Process Mining Wil van der Aalst Ana Karla Medeiros Ton Weijters Eindhoven University of Technology Department.
Workflow patterns using BPMN 2.0
History-Dependent Petri Nets Kees van Hee, Alexander Serebrenik, Natalia Sidorova, Wil van der Aalst ?
/faculteit technologie management 1 Process Mining: Extension Mining Algorithms Ana Karla Alves de Medeiros Ana Karla Alves de Medeiros Eindhoven University.
Process Mining for Ubiquitous Mobile Systems An Overview and a Concrete Algorithm Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department.
Process Mining Control flow process discovery Fabrizio Maria Maggi (based on Process Mining book – Springer copyright 2011 and lecture material by Marlon.
Jorge Muñoz-Gama Universitat Politècnica de Catalunya (Barcelona, Spain) Algorithms for Process Conformance and Process Refinement.
Process Mining Control flow process discovery
Process Mining: Discovering processes from event logs All truths are easy to understand once they are discovered; the point is to discover them. Galileo.
DECOMPOSED CONFORMANCE Jorge Munoz-Gama, Josep Carmona and W.M.P van der Aalst.
مهندسی مجدد فرآیندهای تجاری
Jianmin Wang 1, Shaoxu Song 1, Xiaochen Zhu 1, Xuemin Lin 2 1 Tsinghua University, China 2 University of New South Wales, Australia 1/23 VLDB 2013.
Han-na Yang Rediscovering Workflow Models from Event-Based Data using Little Thumb.
Workflow Management Kap. 6. Roadmap for Workflows = Design of Workflow Systems Wil van der Aalst has copyrights to almost all figures in the following.
Petri nets refresher Prof.dr.ir. Wil van der Aalst
Process-oriented System Analysis Process Mining. BPM Lifecycle.
/faculteit technologie management PN-1 مهندسی مجدد فرآیندهای تجاری بخش دوم: مدلسازی فرآیندها به کمک Petri nets.
Decision Mining in Prom A. Rozinat and W.M.P. van der Aalst Joosung, Ko.
Decomposing Data-aware Conformance Checking Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona, Wil van der Aalst PAGE 0.
/faculteit technologie management PN-1 Petri nets refresher Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology, Faculty of Technology Management,
/faculteit technologie management PN-1 Petri nets refresher Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology, Faculty of Technology Management,
Special Factoring. Difference of Squares General Formula: (x) 2 – (y) 2 = (x + y)(x – y)
9.1 – Multiplying & Dividing Rational Expressions.
/faculteit technologie management PN-1 Petri nets refresher Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology, Faculty of Technology Management,
1 CS techniques for IT auditing Lecture 6. Dept of Mathematics and Computer Science 2 Transition system (1) Basic process model of CS is a transition.
Process Mining – Concepts and Algorithms Review of literature on process mining techniques for event log data.
30 januari 2018 Mining Social Networks Uncovering interaction patterns in business processes Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology.
7 mei 2018 Process Mining in CSCW Systems All truths are easy to understand once they are discovered; the point is to discover them. Galileo Galilei.
Process discovery Sander Leemans.
Profiling based unstructured process logs
David Redlich, Thomas Molka, Wasif Gilani, Awais Rashid, Gordon Blair
Concurrent Systems Modeling using Petri Nets – Part II
Wil van der Aalst Eindhoven University of Technology
Wil van der Aalst Eindhoven University of Technology
Wil van der Aalst Eindhoven University of Technology
Workflow Management Systems: Functions, architecture, and products.
Multi-phase process mining
3 mei 2019 Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance Wil van der Aalst Ana Karla A. de Medeiros.
Business Alignment Using Process Mining as a Tool for Delta Analysis
5 juli 2019 Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance Wil van der Aalst Ana Karla A. de Medeiros.
19 augustus 2019 Mining Social Networks Uncovering interaction patterns in business processes Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology.
Presentation transcript:

/faculteit technologie management Workflow Mining: Current Status and Future Directions Ana Karla A. de Medeiros, W.M.P van der Aalst and A.J.M.M. Weijters Eindhoven University of Technology Department of Information and Technology

/faculteit technologie management Outline Motivation Workflow Mining:  -algorithm Workflow Mining: limitations Extensions to Mining Algorithms Discussion and Future work

/faculteit technologie management Workflow Mining – Motivation –Workflow Mining (What is the process?) –Delta analysis (Are we doing what was specified?) –Performance analysis (How can we improve?)

/faculteit technologie management Workflow Mining – Process log ABCDACBDEF case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task E case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task F case 4 : task D Minimal information in noise- free log: case id’s and task id’s Additional information: event type, time, resources, and data In this log there are three possible sequences:

/faculteit technologie management Workflow Mining – Ordering Relations >, ,||,# Direct succession: x>y iff for some case x is directly followed by y. Causality: x  y iff x>y and not y>x. Parallel: x||y iff x>y and y>x Unrelated: x#y iff not x>y and not y>x. case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B... A>BA>CB>CB>DC>BC>DE>F ABABACACBDBDCDCDEFEFABABACACBDBDCDCDEFEF B||CC||BABCDACBDEF

/faculteit technologie management Workflow Mining –  -algorithm Let W be a workflow log over T.  (W) is defined as follows. 1.T W = { t  T     W t   }, 2.T I = { t  T     W t = first(  ) }, 3.T O = { t  T     W t = last(  ) }, 4.X W = { (A,B)  A  T W  B  T W   a  A  b  B a  W b   a1,a2  A a 1 # W a 2   b1,b2  B b 1 # W b 2 }, 5.Y W = { (A,B)  X   (A,B)  X A  A  B  B  (A,B) = (A,B) }, 6.P W = { p (A,B)  (A,B)  Y W }  {i W,o W }, 7.F W = { (a,p (A,B) )  (A,B)  Y W  a  A }  { (p (A,B),b)  (A,B)  Y W  b  B }  { (i W,t)  t  T I }  { (t,o W )  t  T O }, and  (W) = (P W,T W,F W ).

/faculteit technologie management Workflow Mining –  -algorithmABCDACBDEF ABABACACBDBDCDCDEFEFABABACACBDBDCDCDEFEF B||CC||B

/faculteit technologie management Workflow Mining –  -algorithm If log is complete with respect to relation >, it can be used to mine SWF-net without short loops Structured Workflow Nets (SWF-nets) have no implicit places and the following two constructs cannot be used:

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management  -algorithm limitations – Short Loops One-length Two-length B>B and not B>B implies BB (impossible!) A>B and B>A implies A||B and B||A instead of AB and BA

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management  -algorithm limitations – Invisible Tasks Nets are behaviorally equivalent!

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management  -algorithm limitations – Synchronization of OR-join places But...

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management  -algorithm limitations – Duplicate Tasks

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management  -algorithm limitations – Implicit Places

/faculteit technologie management Problematic constructs –Short loops –Invisible Tasks –Synchronization of OR-join places –Duplicate Tasks –Implicit Places –Non-free Choice Workflow Mining –  -algorithm limitations

/faculteit technologie management  -algorithm limitations – Non-free Choice But...

/faculteit technologie management Some problematic constructs relate because –Can have same complete workflow log and/or –Same set of ordering relations Workflow Mining – Trade-offs between Problematic Constructs XYXAAY X  A A  Y

/faculteit technologie management Process mining = 3-phase process 1.Pre-processing 2.Processing 3.Post-processing Example for 1-lenght loops in SWF-nets Workflow Mining – Extensions to Mining Algorithms

/faculteit technologie management Workflow Mining – Extensions to Mining Algorithms (Example)

/faculteit technologie management  -algorithm cannot mine correctly –Short loops –Invisible tasks –Duplicate Tasks –Implicit Places –Non-free Choice –Synchronization of OR-join Places Extensions are possible, but relations between problematic constructs imply in trade-offs Workflow Mining – Discussion and Future Work

/faculteit technologie management Future steps –Extend the class of WF-nets  -algorithm can correctly mine –Create mining algorithms to handle workflows beyond WF-nets –Develop mining heuristics to deal with noisy or incomplete workflow logs Workflow Mining – Discussion and Future Work

/faculteit technologie management Questions?