Air Pollution/Environmental Technology laboratory Initial results on OMI NO 2 Validation during CINDI A contribution to the BIRA Cindi Workshop Yipin Zhou,

Slides:



Advertisements
Similar presentations
Proposed new uses for the Ceilometer Network
Advertisements

A comparison of OMI NO 2 VTC with in- situ measurements in Switzerland Dominik Brunner, Brigitte Buchmann, Thomas Seitz, and Martin Steinbacher Empa, Swiss.
Papers DSCD intercomparison: Journal: ATM based on 1996 template Core team: HKR, MVR, FW, MK Figures: MVR Tables: FW Deadline: May 2010 Campaign overview:
SCILOV-10 Validation of SCIAMACHY nadir operational NO 2 product F. Azam, A. Richter, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati, Italy.
Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Simultaneous profile measurements of BrO, OClO and NO 2 in the polar vortex Chris Sioris and Kelly Chance Smithsonian Astrophysical Observatory.
Observing U.S. urban NO x emissions from Ozone Monitoring Instrument (OMI) satellite retrievals Zifeng Lu, David G. Streets Decision and Information Sciences.
Results from the OMPS Nadir Instruments on Suomi NPP Satellite
TEMIS user workshop, Frascati, 8-9 October 2007 Status of Central European NO 2 products Dominik Brunner, Daniel Schaub, Brigitte Buchmann Empa, Swiss.
Hester Volten, Ellen Brinksma, Stijn Berkhout, Daan Swart, René van der Hoff, Hans Bergwerff, Pieternel Levelt, Gaia Pinardi, Michel Van Roozendael NO.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Retrieval of SO 2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne: Dalhousie.
OMI NO 2 observations of boreal forest fires Nicolas Bousserez, Randall V. Martin, Lok Lamsal, and the ARCTAS team Dalhousie University Halifax, Nova Scotia.
Comparison of the aerosol extinction coefficient retrieved from MAX-DOAS measurements to in-situ measurements P. Zieger 1, K. Clemer 2, S. Yilmaz 3, R.
Aircraft spiral on July 20, 2011 at 14 UTC Validation of GOES-R ABI Surface PM2.5 Concentrations using AIRNOW and Aircraft Data Shobha Kondragunta (NOAA),
AQUA AURA The Berkeley High Spatial Resolution(BEHR) OMI NO2 Retrieval: Recent Trends in NO2 Ronald C. Cohen University of California, Berkeley $$ NASA.
Irie et al., Multi-component retrievals for MAX-DOAS, 2 nd CINDI workshop, Brussels, March 10-11, 2010 Multi-component vertical profile retrievals for.
1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer.
TEMPO NO 2 Validation Ron Cohen, UC Berkeley. 1. Precision of 1x10 15 molecules/cm 2 (~0.5 ppb in the PBL) Approach: ~3 Pandoras for 1 month; 4 seasons.
Irion et al., May 3, 2005 Page 1 Ozone validation for AIRS V4 Fredrick W. Irion, Michael R. Gunson Jet Propulsion Laboratory California Institute of Technology.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
Algorithms and chemical data assimilation activities at Environment Canada Chris McLinden Air Quality Research Division, Environment Canada 2 nd TEMPO.
Lok Lamsal, Nickolay Krotkov, Randall Martin, Kenneth Pickering, Chris Loughner, James Crawford, Chris McLinden TEMPO Science Team Meeting Huntsville,
AGU 2002 Fall Meeting NASA Langley Research Center / Atmospheric Sciences Validation of GOES-8 Derived Cloud Properties Over the Southeastern Pacific J.
Indian Power-plant NO x Emissions from OMI and Inventories David Streets and Zifeng Lu Argonne National Laboratory Argonne, IL AQAST-3 Meeting University.
AMFIC second progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Advances in Applying Satellite Remote Sensing to the AQHI Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Akhila Padmanabhan, Dalhousie.
OMI Validation Status Mark Kroon - KNMI (on behalf of the OMI validation team) OMI Science Team Meeting Helsinki, 23 June 2008.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
CINDI – Profiling by Tim Hay. Read DSCD or SCD file Write SZAs, SAzs, elevations, & viewing Azs to geometry file for RT Read prescribed profiles and settings:
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Satellite based versus traditional air pollution monitoring: Requirements, limitations, and chances Dominik Brunner, Christoph Hueglin, Christoph Zellweger,
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Plans to study horizontal NO 2 distribution Ankie Piters, Tim Vlemmix, KNMI data from: INTA, IUPB, JAMSTEC, KNMI, Leicester, NASA Objectives: –Satellite.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
OMI Nitrogen Dioxide Validation Overview Ellen Brinksma & Edward Celarier with inputs from many others (AO, NASA, …)
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Radiative transfer in the thermal infrared and the surface source term
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Requirement: Provide information to air quality decision makers and improve.
 Methodology  Comparison with others instruments  Impact of daily AMF  Conclusions Tropospheric NO 2 from SAOZ F. Goutail, A. Pazmino, A. Griesfeller,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
Lok Lamsal, Nickolay Krotkov, Sergey Marchenko, Edward Celarier, William Swartz, Wenhan Qin, Alexander Vasilkov, Eric Bucsela, Dave Haffner 19 th OMI Science.
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
OMI Nitrogen Dioxide Workshop Ellen Brinksma, Folkert Boersma.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
DOAS workshop 2015, Brussels, July 2015
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
6th TEMPO Science Team Meeting
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Presentation transcript:

Air Pollution/Environmental Technology laboratory Initial results on OMI NO 2 Validation during CINDI A contribution to the BIRA Cindi Workshop Yipin Zhou, Dominik Brunner, and Brigitte Buchmann Empa, Swiss Federal Laboratories for Materials Testing and Research Dübendorf, Switzerland Empa, Swiss Federal Laboratories for Materials Testing and Research Dübendorf, Switzerland With special thanks to Florence Goutail Folkert Boersma Katrijn Clemer BIRA

Air Pollution/Environmental Technology laboratory Outlook 1.Comparison of SAOZ NO 2 column with In-situ column calculated with Lidar and Ceilometer boundary height. 2.Introduction to Empa OMI NO 2 retrieval. 3.Comparison of OMI NO 2 column with SAOZ.

Air Pollution/Environmental Technology laboratory In-situ vs SAOZ NO 2 columns (10 mins resolution) LIDAR PBL tops 11 < UTC < 18 June 24th

Air Pollution/Environmental Technology laboratory Ceilometer PBL tops 11 < UTC < 18 In-situ vs SAOZ NO 2 columns (10 mins resolution)

Air Pollution/Environmental Technology laboratory In-situ vs SAOZ NO 2 columns (1 hour averages) 11 < UTC < 18

Air Pollution/Environmental Technology laboratory OMI tropospheric NO 2 retrieval 1.Based on DOMINO retrieval (TM4 a-priori, SCD, cloud algorithm) 2.Improved AMF calculation (high spatial resolution terrain height, considering BRDF effect based on high spatial and temporal resolution MODIS data set) 3.On-line calculation with LIDORT 3.3

Air Pollution/Environmental Technology laboratory SZA Surface reflectance generally depends on solar zenith angle (SZA) and viewing zenith angle (VZA) OMI tropospheric NO 2 retrieval f vol in July f vol in November volumetricgeometric

Air Pollution/Environmental Technology laboratory VZA BRF Example in summer (July) Typical OMI swath OMI tropospheric NO 2 retrieval Relative error in NO 2

Air Pollution/Environmental Technology laboratory OMI tropospheric NO 2 retrieval Mean NO 2 VTCs averaged over the years 2006 and 2007 (July, Nov)

Air Pollution/Environmental Technology laboratory OMI pixel selection For each orbit (VZA <65), find the pixel closest to the Cabauw tower. Average if there are two pixels with similiar distance.

Air Pollution/Environmental Technology laboratory Row anomaly (28 th -40 th,46 th -50 th,53 th -54 th pixels are affected ) Empa retrieval (screening, cloud fraction < 25%) OMI vs SAOZ

Air Pollution/Environmental Technology laboratory OMI vs SAOZ n=12 (only good pixels) n=20 (including row anomaly pixels) Cloud radiance fraction (cloud fraction < 25%)

Air Pollution/Environmental Technology laboratory OMI vs SAOZ Cloud screening is necessary for validation

Air Pollution/Environmental Technology laboratory Conclusions 1.NO 2 columns constructed from the in-situ measurement agrees well with the SAOZ columns. Better agreement is found from the in-situ columns calculated with boundary height from Lidar and SAOZ retrieved with IASB AMFs calculated using their NO 2 and aerosol profiles. 2.For the pixels with cloud fraction smaller than 25%, the correlation of the OMI NO 2 columns and the SAOZ columns are better than 0.6. Empa retrieval shows good agreement even when the sample size is quite small. Albedo effect is not obvious during this time period. 3.Cloud shows larger impact on the NO 2 retrieval than the row anomaly.