Coherence measurements at P04

Slides:



Advertisements
Similar presentations
Soft X-ray Self-Seeding
Advertisements

Focusing monochromators/analyzers Asymmetric diffraction geometry of the monochromator Dispersive double crystal monochromator Two wavelength sandwich.
Single Photon Interference Jeff, Jacob, Bryce, Edward, and Julie.
Single - shot magnetic Fourier transform holography at S. Schleitzer* 1, L. Müller 1, C. Gutt 1, R. Frömter 2, M. Rahbar Azad 2, B. Beyersdorff.
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
Professor David Attwood / UC Berkeley / ICTP-IAEA School, Trieste, November 2014 ICTP_Trieste_Lec1_Nov2014.pptx Introduction to Synchrotron Radiation and.
Approaches for the generation of femtosecond x-ray pulses Zhirong Huang (SLAC)
Optics in Astronomy - Interferometry - Oskar von der Lühe Kiepenheuer-Institut für Sonnenphysik Freiburg, Germany.
The BESSY Soft X-Ray SASE FEL (Free Electron Laser)
Bunch Length Measurements at the Swiss Light Source (SLS) Linac at the PSI using Electro-Optical Sampling A.Winter, Aachen University and DESY Miniworkshop.
FLASH Experiments with Photons High intensity laser light in the VUV spectral region Harald Redlin; HASYLAB.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
Space Charge meeting – CERN – 09/10/2014
Spontaneous Radiation at LCLS Sven Reiche UCLA - 09/22/04 Sven Reiche UCLA - 09/22/04.
R. M. Bionta SLAC November 14, 2005 UCRL-PRES-XXXXXX LCLS Beam-Based Undulator K Measurements Workshop Use of FEL Off-Axis Zone Plate.
The DESY Gas Monitor Detector (GMD) at the SXR beamline at LCLS Stefan Moeller, LCLS Kai Tiedtke, Svea Kreis, Fini Jastrow, Andrei Sorokin (DESY) Michael.
Latest Results on HXRSS at LCLS Franz-Josef Decker 4-Feb Seeding with 004, 220 and over-compression 2.Tuned beam with slotted foil cutting horns.
SPECTROSCOPIC DIAGNOSTIC COMPLEX FOR STUDYING PULSED TOKAMAK PLASMA Yu. Golubovskii, Yu. Ionikh, A. Mestchanov, V. Milenin, I. Porokhova, N. Timofeev Saint-Petersburg.
Recent Progress in X-ray Emittance Diagnostics at SPring-8 S. Takano, M. Masaki, and H. Sumitomo * JASRI/SPring-8, Hyogo, Japan SES, Hyogo, Japan *
BROOKHAVEN SCIENCE ASSOCIATES BIW ’ 06 Lepton Beam Emittance Instrumentation Igor Pinayev National Synchrotron Light Source BNL, Upton, NY.
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
P. Skopintsev1,2,3, A. Singer1, J. Bach4, L. Müller1, B. Beyersdorff2, S. Schleitzer1, O. Gorobtsov1, A. Shabalin1, R.P. Kurta1, D. Dzhigaev1,5, O.M. Yefanov1,
Fourier relations in Optics Near fieldFar field FrequencyPulse duration FrequencyCoherence length Beam waist Beam divergence Focal plane of lensThe other.
XBSM Analysis - Dan Peterson Review of the optics elements: Pinhole (“GAP”), FZP, Coded Aperture Extracting information from the GAP what is the GAP width?
1 2. Focusing Microscopy Object placed close to secondary source: => strong magnification The smaller the focus, the sharper the image! Spectroscopy, tomography.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
September 16, 2008LSST Camera F2F1 Camera Calibration Optical Configurations and Calculations Keith Bechtol Andy Scacco Allesandro Sonnenfeld.
FLASH Operation at DESY From a Test Accelerator to a User Facility Michael Bieler FLASH Operation at DESY WAO2012, SLAC, Aug. 8, 2012.
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
I.A. Vartanyants, I.K. Robinson
Assessing Single Crystal Diamond Quality
Talbot effect in X-Ray Waveguides I. Bukreeva 1,2, A. Cedola 1, A. Sorrentino 1  F. Scarinci 1, M. Ilie 1, M. Fratini 1, and S. Lagomarsino 1 1 Istituto.
O. Gorobtsov 1,2, U. Lorenz 3, N. Kabachnik 4,5, I. A. Vartanyants 1,6 Electronic damage for short high-power x-ray pulses: its effect on single-particle.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
1 W14D2: Interference and Diffraction Experiment 6 Today’s Reading Course Notes: Sections
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy Thomas Jefferson National Accelerator Facility FEL Bunch length.
A users viewpoint: absorption spectroscopy at a synchrotron Frithjof Nolting.
Topics Young’s double slit experiment with laser light: Determine the wavelength of the laser light. The double slit experiment with white light: Determine.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
16 Superposition and Standing Waves Superposition of Waves Standing Waves Additional: Superposition of Standing Waves, Harmonic Analysis & Synthesis Hk:
Current status of the BaD-ElPh project at ELETTRA
Peterson xBSM Optics, Beam Size Calibration1 xBSM Beam Size Calibration Dan Peterson CesrTA general meeting introduction to the optics.
Calculation of the Coded Aperture zero-beam-size image (the “image”). The CA fitting procedure: The image is parameterized as a Sum-Of-Gaussians.
XBSM Analysis - Dan Peterson Review of the optics elements: Pinhole (“GAP”), FZP, Coded Aperture Extracting information from the GAP what is the GAP width?
Summer '07 at CLS Small Angle X-Ray Scattering Peter ChenChithra Karunakaran & Konstantine Kaznatcheev.
Injector Requirements Linac Coherent Light Source Stanford Linear Accelerator Center Technical Review, March 1st, 2004 Cécile.
Experience with Novosibirsk FEL Getmanov Yaroslav Budker INP, Russia Dec. 2012, Berlin, Germany Unwanted Beam Workshop.
Benchmarking Headtail with e-cloud observations with LHC 25ns beam H. Bartosik, W. Höfle, G. Iadarola, Y. Papaphilippou, G. Rumolo.
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
Coherence measurements at P04
Young Fourier III & Ψ.
Phase determination in transmitted wave by ptychographical experiments on thin crystals: theoretical modelling. O. Y. Gorobtsov1,2, A. Shabalin1, M. Civita3,4,
3. SR interferometer.
Benchmarking the SPS transverse impedance model: headtail growth rates
BINP, Novosibirsk, Russia
X-ray detectors and diagnostics for HED instrument
Soft X-ray Absorption and Coherence Analysis
Young’s double slit experiment & Spatial coherence of light
Coherence 1 1.
G. Marcus, Y. Ding, J. Qiang 02/06/2017
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Diffraction.
Transverse size and distribution of FEL x-ray radiation of the LCLS
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Optics John Arthur, SLAC & William W. Craig, LLNL April 24, 2002
T. Mitsuhashi, John Flanagan G. Mitsuka
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Coherence measurements at P04 Petr Skopintsev P04 Users Meeting, 13.06.2014 DESY, Hamburg, Germany NRC “Kurchatov Institute”, Moscow, Russia Collaboration between: Jens Viefhaus (P04 – Beam line) Axel Rosenhahn (Analytical Chemistry Group, Ruhr-University Bochum) Ivan Vartanyants (Coherent Imaging Group)

Theory of spatial coherence measurements Outline Theory of spatial coherence measurements First P04 experiment Comparison of NRAs and Double Pinholes Second P04 experiment Additional investigation with NRAs Summary

Mutual coherence function Degree of spatial coherence Г 𝒓 𝟏 , 𝒓 𝟐 = 𝐸 𝒓 𝟏 , 𝐸 ∗ ( 𝒓 𝟐 ) Intensity Сoherence Factor 𝛾 𝒓 𝟏 , 𝒓 𝟐 = Г 𝒓 𝟏 , 𝒓 𝟐 𝐼 𝒓 𝟏 𝐼 𝒓 𝟐 𝐼 𝒓 =Г 𝒓,𝒓 Degree of spatial coherence 𝜁= Г 𝒓 𝟏 , 𝒓 𝟐 2 𝑑 𝒓 𝟏 𝑑 𝒓 𝟐 𝐼 𝒓 𝟏 𝑑 𝒓 𝟏 𝐼 𝒓 𝟐 𝑑 𝒓 𝟐 Time domain removed for simplicity 𝟎≤𝜁≤𝟏 Incoherent field Coherent field

intensity distribution I(q) Young’s Experiment 𝐼 𝑞 = 𝐼 𝐴 𝑞 𝟏+ |𝛾 12 |𝐜𝐨𝐬⁡(𝒒∙𝒅+ 𝛼 12 ) 𝐼 (𝑥)=𝑻 𝒙 + | 𝛾 12 | 2 𝑒 𝑖 𝛼 12 𝑻 𝒙−𝒅 + + 𝑒 −𝑖 𝛼 12 𝑻 𝒙−𝒅 Incoherent Coherent Part. coherent 𝑪 𝟎 , 𝑪 𝟎 , 𝑪 𝟎 , 𝑪 𝟏𝟐 𝑪 𝟏𝟐 =𝟎 𝑪 𝟏𝟐 𝑪 𝟏𝟐 =𝟎 Double pinholes diffraction intensity distribution I(q) Fourier transform of I(q)

𝛾 12 Young’s Experiment Δx 𝐶 0 = 𝐼 1 + 𝐼 2 𝛾 12 𝐶 21 = | 𝛾 12 | 𝐼 1 𝐼 2 𝐶 12 = | 𝛾 12 | 𝐼 1 𝐼 2 Δx -Δx Δx Modulus of complex degree of spatial coherence is a function of distance between slits: | 𝛾 12 |≡|𝛾 ∆𝑥 | J.W. Goodman, Statistical optics

𝛾 12 𝒄𝒐𝒉𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 𝒍 𝒄 Young’s Experiment Δx 𝐶 0 = 𝐼 1 + 𝐼 2 𝒄𝒐𝒉𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 𝒍 𝒄 𝛾 12 𝐶 21 = | 𝛾 12 | 𝐼 1 𝐼 2 𝐶 12 = | 𝛾 12 | 𝐼 1 𝐼 2 Δx -Δx Δx Modulus of complex degree of spatial coherence is a function of distance between slits: | 𝛾 12 |≡|𝛾 ∆𝑥 | J.W. Goodman, Statistical optics

Non-Redundant Array of Slits 10 peaks 10 points 𝐶 0 = 𝑖=1 𝑛=10 𝐼 𝑖 , 1 experiment with 5 slits = 10 experiments with 2 slits 𝐶 𝑖𝑗 =| 𝛾 𝑖𝑗 | 𝐼 𝑖 𝐼 𝑗

P04 beamline (PETRA III) experiment Undulator tuned to 400 eV B Exit slit openings: 40 µm and 230 µm * Vacuum chamber constructed by Hans Peter Oepen group (Hamburg University)

Data: Typical Intensity Scans NRA NRA Double pinholes Detector plane Fourier Transform

Data: Typical Intensity Scans 2R R NRA NRA Second harmonics (monochromator) 800 eV 2R Double pinholes 400 eV R 400 eV 800 eV Detector plane Fourier Transform

Data: Typical Intensity Scans NRA NRA Second harmonics (monochromator) 800 eV Double pinholes 400 eV 400 eV 800 eV Detector plane Fourier Transform

Data: Typical Intensity Scans NRA Double pinholes Detector plane Fourier Transform

Data: Beam Profile Scans Performed on double pinholes separated by 15 µm FWHM found with double Gauss functions fits Exit slit 40 µm Exit slit 230 µm 15 µm 15 µm FWHM=11±1µm FWHM=42±2 µm

Results: NRA & D.P. are identical E = 400 eV Double pinholes data points NRA data points Exit Slit width 40 µm Exit Slit width 230 µm

D C P04 beamline experiment Beam defining slit opening varied Exit slit cut out 396.5, 400 and 403 eV fraction of the beam * Vacuum chamber constructed by Hans Peter Oepen group (Hamburg University)

Beam defining slit variation E = 396.5 eV, 400 eV, 403 eV Exit Slit width 230 µm 𝜻=𝟎.𝟎𝟓÷𝟎.𝟖 𝜻=𝟎.𝟏𝟐÷𝟎.𝟏𝟒 𝜻=𝟎.𝟐𝟒÷𝟎.𝟐𝟓 Features of coherence dependence on beam defining slit opening observed

Aim – measure spatial coherence prior to ptychography experiment Second experiment at P04 Aim – measure spatial coherence prior to ptychography experiment

Second experiment at P04 Undulator energy Exit slit opening NRA orientation 1. 50 μm 2. 100 μm 3. 200 μm a. Horizontal b. Vertical 500 eV * HORST chamber constructed by Axel Rosenhahn group (Ruhr-University Bochum)

P04 diffraction patterns Typical diffraction image Fourier transform How can we achieve nm-scale resolution? Why phase images are of interest? Area for further analysis

50 μm 100 μm 200 μm P04 Vertical coherence Beam profile Coherence Exit slit: 50 μm 100 μm 200 μm Beam profile FWHM = 7 μm FWHM = 12.6 μm FWHM = 29.5 μm lc = 7.5 μm lc = 4.2 μm lc = 2.4 μm ζ = 0.73 ζ = 0.37 ζ = 0.10 Coherence

P04 Horizontal coherence Exit slit: 50 μm 100 μm 200 μm Coherence lc = 12.5 μm lc = 12.4 μm lc = 12.4 μm ζ = 0.14 ζ = 0.14 ζ = 0.15 FWHM estimated as 100 μm

PETRA III vs BESSY II

Conclusions NRA allows to measure full spatial coherence function in one exposure Results with NRAs and double pinholes are identical NRA method works especially well with large beams This approach can be effectively used prior to any coherent imaging experiment May be useful for measuring single pulse coherence properties of FELs

Thank you for your attention! Thanks to DESY: A. Singer O.Y. Gorobtsov D. Dzhigaev A. Shabalin O.M. Yefanov M. Rose R.P. Kurta I.A. Vartanyants SLAC: A. Sakdinawat J. Viefhaus DESY: L. Glaser L. Müller S. Schleitzer G. Grübel Uni. Hamburg: J. Bach B. Beyersdorff R. Frömter H.P. Oepen Bochum: T. Senkbeil A. Buck T. Gorniak A. Rosenhahn Thank you for your attention!

𝟔𝟐𝒎𝒎 𝟖𝟎 𝒄𝒎 S1. Temporal coherence 𝑙 𝑡 ≈λ 𝐸 ∆𝐸 =3.1 𝜇𝑚 𝐸 ∆𝐸 ≈1000 𝒍 𝒕 (3.1 𝜇𝑚)>∆𝑳 (0.6 𝜇𝑚) 𝟔𝟐𝒎𝒎 15 𝜇𝑚 ∆𝑳=𝟎.𝟔 𝝁𝒎 𝟖𝟎 𝒄𝒎

S2. Two-dimensional NRA Image taken from Gonzalez, A. I. & Meja, Y. (2011). J. Opt. Soc. Am. A, 28(6), 1107-1113

S3. Non-uniformity of coherence 𝑟 2 Г 𝒓 𝟏 , 𝒓 𝟐 15 7.5 -7.5 -15 𝑟 1 -15 -7.5 7.5 15 𝑟 1 -15 -7.5 7.5 15

S3. Non-uniformity of coherence 𝑟 2 Г 𝒓 𝟏 , 𝒓 𝟐 50 μm 15 7.5 100 μm -7.5 -15 200 μm -15 -7.5 7.5 15 𝑟 1

S4. More data on coherence Energy: 396.5 eV 400 eV 403 eV 𝑫 𝒆𝒔 =4.7 mm 𝑫 𝒆𝒔 =1.7 mm 𝑫 𝒆𝒔 =0.8 mm 𝒍 𝒄𝒐𝒉 =𝟏.𝟗 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟐.𝟑 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟑.𝟎 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟒.𝟒 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟒.𝟓 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟒.𝟗 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟗.𝟎 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟗.𝟒 𝝁𝒎 𝒍 𝒄𝒐𝒉 =𝟗.𝟓 𝝁𝒎 𝜻=𝟎.𝟎𝟓÷𝟎.𝟖 𝜻=𝟎.𝟏𝟐÷𝟎.𝟏𝟒 𝜻=𝟎.𝟐𝟒÷𝟎.𝟐𝟓