Shortest Paths Text Discrete Mathematics and Its Applications (5 th Edition) Kenneth H. Rosen Chapter 8.6 Based on slides from Chuck Allison, Michael T. Goodrich, and Roberto Tamassia By Longin Jan Latecki
Weighted Graphs Graphs that have a number assigned to each edge are called weighted graphs. SF LA DEN CHI ATL MIA BOS NY
Weighted Graphs SF LA DEN CHI ATL MIA BOS NY MILES
Weighted Graphs SF LA DEN CHI ATL MIA BOS NY FARES $129 $99 $79 $59 $89 $69 $129 $89 $39 $99 $79 $69 $39
Weighted Graphs SF LA DEN CHI ATL MIA BOS NY FLIGHT TIMES 4:05 2:55 2:20 2:10 3:50 2:00 1:15 2:10 1:40 1:30 1:55 2:45 0:50 1:50
Weighted Graphs A weighted graph is a graph in which each edge (u, v) has a weight w(u, v). Each weight is a real number. Weights can represent distance, cost, time, capacity, etc. The length of a path in a weighted graph is the sum of the weights on the edges. Dijkstra’s Algorithm finds the shortest path between two vertices.
Dijkstra's Algorithm
Dijkstra Animation Demo
Problem: shortest path from a to z a bd f z ceg abcdefgzS 0∞∞∞∞∞∞∞a x4(a)3(a)∞∞∞∞∞a,c xx
processed: fromNode: distance: # 20 # # index: IndexOfMin
processed: fromNode: distance: # 20 # # index: Unprocessed node adjacent to 2 is 4. # > = 55 so replace # with
processed: fromNode: distance: # # index: IndexOfMin
processed: fromNode: distance: # # index: IndexOfMin Unprocessed node adjacent to 5 is > = 30 so replace 35 with
processed: fromNode: distance: # # index: IndexOfMin Unprocessed node adjacent to 5 is 6. # > = 70 so replace # with
processed: fromNode: distance: # index: IndexOfMin Unprocessed node adjacent to 5 is 7. # > = 95 so replace # with
processed: fromNode: distance: index: IndexOfMin
processed: fromNode: distance: index: IndexOfMin Unprocessed node adjacent to 3 is < = 65 no change in array
processed: fromNode: distance: index: IndexOfMin
processed: fromNode: distance: index: IndexOfMin Unprocessed node adjacent to 4 is > = 65 so replace 70 with 65
processed: fromNode: distance: index: IndexOfMin
processed: fromNode: distance: index: IndexOfMin
processed: fromNode: distance: index: IndexOfMin Unprocessed node adjacent to 6 is > = 80 so replace 95 with 80
processed: fromNode: distance: index: IndexOfMin
processed: fromNode: distance: index: IndexOfMin All nodes have been processed Algorithm finishes.
Theorems Dijkstra’s algorithm finds the length of a shortest path between two vertices in a connected simple undirected weighted graph G=(V,E). The time required by Dijkstra's algorithm is O(|V| 2 ). It will be reduced to O(|E|log|V|) if heap is used to keep {v V\S i : L(v) < }, where S i is the set S after iteration i.
The Traveling Salesman Problem The traveling salesman problem is one of the classical problems in computer science. A traveling salesman wants to visit a number of cities and then return to his starting point. Of course he wants to save time and energy, so he wants to determine the shortest cycle for his trip. We can represent the cities and the distances between them by a weighted, complete, undirected graph. The problem then is to find the shortest cycle (of minimum total weight that visits each vertex exactly one). Finding the shortest cycle is different than Dijkstra’s shortest path. It is much harder too, no polynomial time algorithm exists!
The Traveling Salesman Problem Importance: Variety of scheduling application can be solved as a traveling salesmen problem. Examples : Ordering drill position on a drill press. School bus routing. The problem has theoretical importance because it represents a class of difficult problems known as NP- hard problems.
THE FEDERAL EMERGENCY MANAGEMENT AGENCY A visit must be made to four local offices of FEMA, going out from and returning to the same main office in Northridge, Southern California.
FEMA traveling salesman Network representation
Home
FEMA - Traveling Salesman Solution approaches –Enumeration of all possible cycles. This results in (m-1)! cycles to enumerate for a graph with m nodes. Only small problems can be solved with this approach.
Possible cycles CycleTotal Cost 1. H-O1-O2-O3-O4-H H-O1-O2-O4-O3-H H-O1-O3-O2-O3-H H-O1-O3-O4-O2-H H-O1-O4-O2-O3-H H-O1-O4-O3-O2-H H-O2-O3-O1-O4-H H-O2-O1-O3-O4-H H-O2-O4-O1-O3-H H-O2-O1-O4-O3-H H-O3-O1-O2-O4-H H-O3-O1-O2-O4-H260 Minimum For this problem we have (5-1)! / 2 = 12 cycles. Symmetrical problems need to enumerate only (m-1)! / 2 cycles. FEMA – full enumeration
Home FEMA – optimal solution
The Traveling Salesman Problem Unfortunately, no algorithm solving the traveling salesman problem with polynomial worst-case time complexity has been devised yet. This means that for large numbers of vertices, solving the traveling salesman problem is impractical. In these cases, we can use efficient approximation algorithms that determine a path whose length may be slightly larger than the traveling salesman’s path, but