The Geometric. rhythmic canons between theory, implementation and musical experiment by Moreno Andreatta, Thomas Noll, Carlos Agon and Gerard Assayag presentation.

Slides:



Advertisements
Similar presentations
Equivalence Relations
Advertisements

Lecture 1 RMIT University, Taylor's University Learning Objectives
Chapter 4 – Finite Fields. Introduction will now introduce finite fields of increasing importance in cryptography –AES, Elliptic Curve, IDEA, Public Key.
Asymmetric Rhythms and Tiling Canons
Asymmetric Rhythms and Tiling Canons Dr. Rachel Hall Saint Joseph’s University Vassar College May 8, 2007.
3.3 Divisibility Definition If n and d are integers, then n is divisible by d if, and only if, n = dk for some integer k. d | n  There exists an integer.
Homework 7 –Average: 70Median: 75 – Homework 8 –Average: 74Median:
Math 3121 Abstract Algebra I
1.  Detailed Study of groups is a fundamental concept in the study of abstract algebra. To define the notion of groups,we require the concept of binary.
Computational Geometry The art of finding algorithms for solving geometrical problems Literature: –M. De Berg et al: Computational Geometry, Springer,
Chapter 7 Relations : the second time around
ENGG2013 Unit 11 Row-Rank Feb,
Computational Geometry The art of finding algorithms for solving geometrical problems Literature: –M. De Berg et al: Computational Geometry, Springer,
Polynomial-Time Approximation Schemes for Geometric Intersection Graphs Authors: T. Erlebach, L. Jansen, and E. Seidel Presented by: Ping Luo 10/17/2005.
Discrete Structures Chapter 3 Set Theory Nurul Amelina Nasharuddin Multimedia Department.
Cyclic Groups. Definition G is a cyclic group if G = for some a in G.
CPSC 3730 Cryptography and Network Security
Information Security and Management 4. Finite Fields 8
Numbers, Operations, and Quantitative Reasoning.
CS-5800 Theory of Computation II PROJECT PRESENTATION By Quincy Campbell & Sandeep Ravikanti.
1 1.3 © 2012 Pearson Education, Inc. Linear Equations in Linear Algebra VECTOR EQUATIONS.
5.6 Generating Permutations and Combinations Generating Permutations Many different algorithms have been developed to generate the n! permutations of this.
Three different ways There are three different ways to show that ρ(A) is a simple eigenvalue of an irreducible nonnegative matrix A:
Properties of Real Numbers. Sets In mathematics, a set is a collection of things Sets can be studies as a topic all on its own (known as set theory),
Data Security and Encryption (CSE348) 1. Lecture # 12 2.
April 14, 2015Applied Discrete Mathematics Week 10: Equivalence Relations 1 Properties of Relations Definition: A relation R on a set A is called transitive.
The Real Number System -13 O, 1, 2, 3… 1/ π.
CS4432: Database Systems II Query Processing- Part 3 1.
Maximum Flow Problem (Thanks to Jim Orlin & MIT OCW)
I.4 Polyhedral Theory 1. Integer Programming  Objective of Study: want to know how to describe the convex hull of the solution set to the IP problem.
ELEMENTARY SET THEORY.
Math 3121 Abstract Algebra I Lecture 5 Finish Sections 6 + Review: Cyclic Groups, Review.
15.082J and 6.855J March 4, 2003 Introduction to Maximum Flows.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Les mathématiques de l‘interprétation musicale:
1 INFO 2950 Prof. Carla Gomes Module Induction Rosen, Chapter 4.
 Example: [Z m ;+,*] is a field iff m is a prime number  [a] -1 =?  If GCD(a,n)=1,then there exist k and s, s.t. ak+ns=1, where k, s  Z.  ns=1-ak.
Discrete Mathematics
1 Chapter 4 Generating Permutations and Combinations.
Material Taken From: Mathematics for the international student Mathematical Studies SL Mal Coad, Glen Whiffen, John Owen, Robert Haese, Sandra Haese.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions.
Approximation Algorithms based on linear programming.
Introduction to Cryptography Hyunsung Kim, PhD University of Malawi, Chancellor College Kyungil University February, 2016.
Math 3121 Abstract Algebra I Lecture 6 Midterm back over+Section 7.
Dilworth’s theorem and extremal set theory 張雁婷 國立交通大學應用數學系.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-5 Mathematical Background:
The Relation Induced by a Partition
Existence of Non-measurable Set
Principle of Inclusion and Exclusion
Chapter 5 Relations and Operations
Chapter 4 Introduction to Set Theory
Lecture 04 Set Theory Profs. Koike and Yukita
What is an algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate.
What is an algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate.
3.3 Applications of Maximum Flow and Minimum Cut
2.1 Sets Dr. Halimah Alshehri.
The Fundamental Theorem of Algebra
1.3 Vector Equations.
B.Sc. III Year Mr. Shrimangale G.W.
Theorem 6.29: Any Field is an integral domain
Dilworth theorem and Duality in graph
I.4 Polyhedral Theory (NW)
Theorem 6.30: A finite integral domain is a field.
Properties of Relations
I.4 Polyhedral Theory.
Counting Elements of Disjoint Sets: The Addition Rule
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
CS 6310 Advanced Design and Analysis of Algorithms Rajani Pingili
Sets, Unions, Intersections, and Complements
Mathematical Background: Extension Finite Fields
Presentation transcript:

The Geometric. rhythmic canons between theory, implementation and musical experiment by Moreno Andreatta, Thomas Noll, Carlos Agon and Gerard Assayag presentation by Elaine Chew ISE 599: Spring 2004

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove2 Algebraic Definitions R = rhythm, represented by a locally finite set of rational numbers marking onset times dR = period of rhythm, smallest rational number s.t. R = R + dR pR = pulsation, GCD of IOI in R V = voice, a displacement of R by s = R + s S = set of all translations p = pulsation of canon, GCD(pR,pS), largest possible “tick size” for counting time in R+S.

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove3 Transformation to Z/Zn Convert everything element in R to integral counts of the canon’s “tick size”, i.e. r = r/p. Now R is a subset of the set of integers, Z. n = period of the new R = dR/p. By definition, if there is an onset at r  R, then there is another at r + n, r + 2n, r + 3n … Hence, we only need to store the non-repeating parts of R, i.e., a subset of Z, Z/nZ (the cyclic group, Z mod n). Note: should n be LCM(nR, nS)?

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove4 Generating Voices R  Z/Zn = inner rhythm S  Z/Zn = outer rhythm Vs = R + s, where s  S Example n = 16 R = ( ) S = (0 1) V0 = ( ), V1 = ( )

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove5 Types of Canons Rhythmic Tiling Canon I: Union of all Vs covers Z/Zn II: The voices are pairwise disjoint Regular Complementary Canons of Maximal Category, RCMC-Canons (VuZA, 1995) III: pR = pS

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove6 Canon Example * Thanks to Anja Volk for helping to obtain this example

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove7 RCMC Canons Constitute a “factorization” of Z/Zn into two non-periodic subsets, R and S. Smallest such canon has period 72 and 6 voices (no cyclic group smaller than Z/72Z can be factorized into two non- periodic subsets).

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove8 Canon Modulation R = fundamental rhythm S = set of displacements Change S to S + t.

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove9 Rhythmic Re-interpretation R = ( ) S = ( ) n = 72 New set of displacements if t = 16: S1 = ( ) Note: additions are mod 72.

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove10 Rhythmic Re-interpretation R = ( ) S = ( ) n = 72 New set of displacements if t = 16: S1 = ( ) Note: additions are mod 72.

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove11 Implementation

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove12 Implementation  S, Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove13 Example R = ( )

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove14 R = V0 R = ( ) S = ( ) 0.1…….4..5………..12……………………..25……29……… ……….42……….58.59… Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove15 R = V0 R = ( ) S = ( ) 0.1…….4..5………..12……………………..25……29……… ……….42……….58.59… Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove16 V22 R = ( ) S = ( ) 0.1…….4..5………..12… …………………..25……29………... 36……….42……… ……..63? 22 Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove17 V22 R = ( ) S = ( ) 0.1…….4..5………..12… …………………..25……29………... 36……….42……… ……..63? 22 Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove18 V38 R = ( ) S = ( ) 0.1…….4..5……….12….………………….25……29……. ….36……….42……… …63 38 Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove19 V38 R = ( ) S = ( ) 0.1…….4..5……….12….………………….25……29……. ….36……….42……… …63 38 Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove20 V40 R = ( ) S = ( ) 0.1…….4..5……….12….………………….25……29…. ……..36……….42………58.59… Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove21 V40 R = ( ) S = ( ) 0.1…….4..5……….12….………………….25……29…. ……..36……….42………58.59… Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove22 V54 R = ( ) S = ( ) ….………..25……29….……...36……….42……….58.59… …….4..5………..12……….. Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove23 V54 R = ( ) S = ( ) ….………..25……29….……...36……….42……….58.59… …….4..5………..12……….. Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove24 V56 R = ( ) S = ( ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59… Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove25 V56 R = ( ) S = ( ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59… Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove26 Done! R = ( ) S = ( ) Modulation 1

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove27 Implementation  S1, Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove28 V0 R = ( ) S1 = ( ) 0 0.1…….4..5………..12……………………..25……29……… ……….42……….58.59…..63 Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove29 V0 R = ( ) S1 = ( ) 0 0.1…….4..5………..12……………………..25……29……… ……….42……….58.59…..63 Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove30 V16 R = ( ) S1 = ( ) …….4..5………..12…..…………..…..25……29………... 36……….42……….58.59…….63 Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove31 V16 R = ( ) S1 = ( ) …….4..5………..12…..…………..…..25……29………... 36……….42……….58.59…….63 Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove32 V38 R = ( ) S1 = ( ) …….4..5……….12….………………….25……29……. ….36……….42……… …63 Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove33 V38 R = ( ) S1 = ( ) …….4..5……….12….………………….25……29……. ….36……….42……… …63 Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove34 V54 R = ( ) S1 = ( ) ….………..25……29….……...36……….42……….58.59… …….4..5………..12……….. Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove35 V54 R = ( ) S1 = ( ) ….………..25……29….……...36……….42……….58.59… …….4..5………..12……….. Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove36 V56 R = ( ) S1 = ( ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59… Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove37 V56 R = ( ) S1 = ( ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59… Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove38 V70 R = ( ) S1 = ( ) 70 …….4.5.………..12……………………..25……29……….…36.. ……….42…..….58.59… Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove39 V70 R = ( ) S1 = ( ) 70 …….4.5.………..12……………………..25……29……….…36.. ……….42…..….58.59… Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove40 Done! R = ( ) S1 = ( ) Modulation 2

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove41 Augmented Canons An affine transformation –[a,t](x) = (ax + t mod)(m*n) –where a is augmentation factor, t is summand –where R has m elements and S has n A(R), A(S) sets of augmentation factors T(R), T(S) corresponding translations R*S is all pairs of consecutive transformations | R*S | = set of all elements in R*S

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove42 Example R = ( [11,0] [5,1] [5,3] [11 10] ) S = ( [11,0] [5,1] [5,5] ) [a,t](0) = t mod 12 R(0) = ( ) S(R(0)) = [ ( ) ( ) ( ) ] S*R

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove43 R*S R = ( [11,0] [5,1] [5,3] [11 10] ) S = ( [11,0] [5,1] [5,5] ) R*S = (( [1,0] [7,1] [7,5] ) ( [7,1] [1,6] [1,2] ) ( [7,3] [1,8] [1,4] ) ( [1,10] [7,9] [7,5] ) )

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove44 S*R^ R = ( [11,0] [5,1] [5,3] [11 10] ) S = ( [11,0] [5,1] [5,5] ) S*R^ = (( [1,0] [7,1] [7,5] ) ( [7,11] [1,6] [1,10] ) ( [7,9] [1,4] [1,8] ) ( [1,2] [7,3] [7,7] ) ) Note that | S*R | = | R*S^ | but S*R  R*S^

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove45 Properties In non-augmenting case, –A(R) = (1 1 … 1) and A(S) = (1 1 … 1) –Canon duality: S*R = (R*S)^ When both (R,S) and (S,R) generate canons, –| R*S | = | S*R^ | –R*S = S*R^

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove46 Augmented and Dual Canons S*R(0) = (( ) ( ) ( ) ) R*S^(0) = (( ) ( ) ( ) ( ) ) augmented canon dual canon

ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove47 Example R = ( ) S = ([11,0] [5,1] [5,5]) V1 = s1(R) V2 = s2(R) V3 = s3(R) … … …