Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.

Slides:



Advertisements
Similar presentations
New Large* Neutrino Detectors
Advertisements

Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Collective Supernova Neutrino Oscillations.
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
Georg Raffelt, MPI Physics, Munich Neutrinos at the Forefront, Univ. de Lyon, 22–24 Oct 2012 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Physics Opportunities with
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Prospect for detection of supernova neutrino NOW2014 Sep. 9 th, 2014 Otranto, Lecce, Italy 森俊彰 Takaaki Mori for the Super-Kamiokande Collaboration Okayama.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Alessandro MIRIZZI Dip.to di Fisica & Sez. INFN, Bari, Italy SUPERNOVA NEUTRINO PHYSICS WITH A MEGATON DETECTOR NOW 2004 Neutrino Oscillation Workshop.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
The neutrons detection involves the use of gadolinium which has the largest thermal neutron capture cross section ever observed. The neutron capture on.
DAMPING THE FLAVOR PENDULUM BY BREAKING HOMOGENEITY (Alessandro MIRIZZI, Hamburg U.) NOW 2014 Neutrino oscillation workshop Conca Specchiulla, September.
Georg Raffelt, MPI Physics, Munich Neutrino Astrophysics and Fundamental Properties, INT, Seattle, June 2015 Crab Nebula Neutrino Flavor Conversion in.
Georg Raffelt, MPI Physics, Munich Neutrinos, KITP, Santa Barbara, 3–7 Nov 2014 Astrophysical and Cosmological Neutrino Limits Georg G. Raffelt, Max-Planck-Institut.
周 顺 中科院高能所理论室 JUNO中微子天文和天体物理学研讨会 北京,
Atmospheric Neutrinos
Supernova neutrino detection
Günter Sigl, Astroparticules et Cosmologie, ParisILIAS/N5-N6 meeting, Paris, January 23-24, 2006  Supernovae as neutrino and gravitational wave sources.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
Neutrinos – Ghost Particles of the Universe
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
John Beacom, The Ohio State UniversityJinping Neutrino Workshop, Tsinghua University, June 2015 Supernova Burst and Relic Neutrinos 1 John Beacom, The.
Supernovas Supernova = When gravity wins… core collapses and a star explodes. Two main types: Type I and Type II Relatively rare: occur every years.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Exploding Massive Stars: The Perfect ‘App’ for Computational Physics SESAPS 2003 John M. Blondin North Carolina State University.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
Neutrino Oscillations in vacuum Student Seminar on Subatomic Physics Fundamentals of Neutrino Physics Dennis Visser
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    
Coincident search for gravitational-wave and neutrino signals from core-collapse supernovae L. Cadonati (U Mass, Amherst), E. Coccia (LNGS and U Rome II),
Neutrinos and Supernovae Bob Bingham STFC – Centre for Fundamental Physics (CfFP) Rutherford Appleton Laboratory. SUPA– University of Strathclyde.
CP violation in the neutrino sector Lecture 3: Matter effects in neutrino oscillations, extrinsic CP violation Walter Winter Nikhef, Amsterdam,
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
M. Selvi – 17 th June 2005 – Round Table in honour of prof. Koshiba e e x Supernova neutrino detection: present status and new ideas Marco Selvi Bologna.
RESCEU Symposium, University of Tokyo, November 2008John Beacom, The Ohio State University The Diffuse Supernova Neutrino Background John Beacom The Ohio.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Supernovae: BeyondDC-Phase 1 Some remarks on supernovae Detection principle – Absorption lengths – Effective volumes – Noise Supernova dynamics & fundamental.
Neutrinos Supernova Neutrinos Crab Nebula
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
The Critical Neutrino Luminosity and its Observational Signatures Ondřej Pejcha with Todd Thompson, Christopher Kochanek, Basudeb Dasgupta Department of.
A model for large non-standard interactions of neutrinos leading to the LMA-dark solution Yasaman Farzan IPM, Tehran.
Georg Raffelt, MPI Physics, Munich Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014 Crab NebulaNeutrinos in Astrophysics and Cosmology Introductory.
Waseda univ. Yamada lab. D1 Chinami Kato
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Astrophysical Constraints on Secret Neutrino Interactions
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
MEMPHYS non-oscillation physics
neutrino flavor conversion in media
Solar & Supernova Neutrinos Detection Methods and Prospects
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
Neutrinos as probes of ultra-high energy astrophysical phenomena
The neutrino mass hierarchy and supernova n
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov Conference, Moscow

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Core-Collapse Supernova Explosion Neutrino cooling by diffusion Collapse of degenerate core Huge rate of low-E neutrinos (tens of MeV) over few seconds in large-volume detectors A few core-collapse SNe in our galaxy per century Once-in-a-lifetime opportunity

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Three Distinct Phases of Neutrino Emission Shock breakout De-leptonization of outer core layers Cooling on neutrino diffusion time scale Spherically symmetric Garching model (25 M ⊙ ) with Boltzmann neutrino transport Explosion triggered

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Neutrino Signal of Supernova 1987A Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty  1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty  50 ms Within clock uncertainties, all signals are contemporaneous

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Operational Detectors for Supernova Neutrinos Super-K (10 4 ) KamLAND (400) SNO+ (300) In brackets events for a “fiducial SN” at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100) HALO HALO (tens) (tens) Daya Bay Daya Bay (100) (100)

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 IceCube as a Supernova Neutrino Detector Pryor, Roos & Webster, ApJ 329:355, Halzen, Jacobsen & Zas, astro-ph/ Demirörs, Ribordy & Salathe, arXiv: SN signal at 10 kpc 10.8 M sun simulation of Basel group [arXiv: ] Accretion Cooling

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Next Generation Large-Scale Detectors (2020+) Megaton water Cherenkov detector Notably Hyper-Kamiokande SN neutrino statistics comparable to IceCube, but with event-by-event energy information Scintillator detector (tens of kilotons) - Original LENA concept 50 kt - JUNO (20 kt) in China for reactor nus - RENO-50 (20 kt) in Korea for reactor nus - Baksan Large Vol. Scintillator Detector (20 kt) IceCube Gen-2 - Dense infill (PINGU) - Larger volume (statistics for high-E events) Doubling the number of optical modules

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Local Group of Galaxies Current and next-generation neutrino detectors sensitive out to few 100 kpc With megatonne class (30 x SK) 60 events from Andromeda

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 SN Distance Distribution and Peak Count Rate Peak count rate in JUNO (20 kt) depending on SN distance probability in Milky Way Model uncertainty (Garching) JUNO Yellow Book, in preparation (2014)

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Crab Nebula Core-Collapse Supernova Explosion Mechanism

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Shock Revival by Neutrinos Georg Raffelt, MPI Physics, Munich S Si O Shock wave PNS Stalled shock wave must receive energy to start re-expansion against ram pressure of infalling stellar core Shock can receive fresh energy from neutrinos! NOW 2014, 7–14 Sept 2014, Otranto, Italy

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Exploding 3D Garching Model (20 M SUN ) Melson, Janka, Bollig, Hanke, Marek & Müller, arXiv: D3D Neutrino opacity reduced (few 10%) by strange quark contribution to nucleon spin (thick lines) “Standard” neutrino opacity (thin lines)

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Exploding 3D Garching Model (20 M SUN ) Melson, Janka, Bollig, Hanke, Marek & Müller, arXiv:

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Variability seen in Neutrinos (3D Model) Tamborra, Hanke, Müller, Janka & Raffelt, arXiv: See also Lund, Marek, Lunardini, Janka & Raffelt, arXiv:

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Sky Map of Lepton-Number Flux (11.2 M SUN Model) Tamborra, Hanke, Janka, Müller, Raffelt & Marek, arXiv: Positive dipole direction and track on sky

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Growth of Lepton-Number Flux Dipole Overall lepton-number flux (monopole) depends on accretion rate, varies between models Maximum dipole similar for different models Dipole persists (and even grows) during SASI activity SASI and LESA dipoles uncorrelated Tamborra et al., arXiv: Monopole Dipole

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Flavor Oscillations Diffuse SN Neutrino Background

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Diffuse Supernova Neutrino Background (DSNB) Beacom & Vagins, PRL 93:171101,2004

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Experimental DSNB Limits Super-Kamiokande Collaboration, arXiv: SuperK I-III SuperK IV (with neutron tagging) KamLand Super-K with Gadolinium enhancement (neutron tagging) will strongly improve sensitivity

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 DSNB Sensitivity of JUNO 20 kt Scintillator Detector JUNO Collaboration, Yellow Book, arXiv: SuperK Limit JUNO 90% Exclusion Sensitivity (10 y) JUNO detection sensitivity (10 y) Example for typical parameters

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Crab Nebula Supernova Neutrino Flavor Conversion

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Gribov and Pontecorvo 1968 Bruno Pontecorvo (1913–1993) Vladimir Gribov (1930–1997) Learning about astrophysical sources with neutrinos Learning about neutrinos from astrophysics and cosmology

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Flavor Oscillations in Core-Collapse Supernovae Neutrino sphere MSW region Neutrino flux Flavor eigenstates are propagation eigenstates Neutrino-neutrino refraction causes a flavor instability, flavor exchange between different parts of spectrum

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Self-Induced Flavor Conversion Flavor content exchanged between different momentum modes (or nus and anti-nus changing together) No net flavor conversion of ensemble (in contrast to MSW conversion) Instability required to get started - Exponentially growing off-diagonals in density matrix - Linearized stability analysis to find growing modes Interacting neutrino system: Coupled oscillators - Collective harmonic oscillation modes - Exponential run-away modes

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 New Development: Spatial Symmetry Breaking Mirizzi, Mangano & Saviano arXiv: See also Duan et al, arXiv: , Chakraborty et al., arXiv: Without flavor oscillations: free streaming Space coordinate along beam Time

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Instability Footprints Chakraborty, Hansen, Izaguirre & Raffelt, arXiv: Shock wave Density profile Small-scale modes “fill in” the stability footprint for large neutrino density Largest-scale mode is “most dangerous” to cross SN density profile Axial-symmetry breaking (MAA) instability (normal ordering NH) is “more dangerous” to trigger self-induced flavor conversion Traditional “bimodal” instability (inverted mass ordering IH)

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Status of Collective Flavor Conversion Self-induced flavor conversion is an instability in flavor space of the interacting neutrino ensemble Space-time dependent phenomenon (not simply stationary or homogeneous) Solutions do not respect symmetries of initial system Instabilities can occur on all scales Essentially back to the drawing board …

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Three Phases – Three Opportunities “Standard Candle” SN theory Distance Flavor conversion Multi-messenger time of flight Strong variations (progenitor, 3D effects, black hole formation, …) Testing astrophysics of core collapse Flavor conversion has strong impact on signal EoS & mass dependence Testing Nuclear Physics Nucleosynthesis in neutrino-driven wind Particle bounds from cooling speed (axions …) Prompt e burst AccretionCooling

Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Looking forward to the next galactic supernova Neutrinos from next nearby supernova: A once-in-a-lifetime opportunity: Do not miss it! A once-in-a-lifetime opportunity: Do not miss it!