Hydrogen as an energy carrier: production and utilisation Dr.-Ing. Roland Hamelmann D Bad Schwartau
⇨ Dr.-Ing. Roland Hamelmann ⇨ TU Clausthal, chemical engineering (PhD on continous production of gas diffusion electrodes) ⇨ Manufacturing of PEMFC for Proton Motor GmbH ⇨ CoE in hydrogen and fuel cell technology at university of applied sciences, Lübeck ⇨ eff +: start-up since 2010 (energy efficiency and hydrogen technology) Vita
1.Intention of hydrogen as an energy carrier 2.(current) Use of hydrogen in chemistry 3.(future) Production of hydrogen in the energy supply chain 4.(future) Utilisation of hydrogen in the energy supply chain 5.Summary Structure
Motivation Storage! 4,73 GW 6,39 GW 5,00 GW 10,47 GW 5,18 GW Fluctuating renewable electricity from wind Data:
EU targets 2020
Capacity needs
Principals Storage type... physics... density [kWh/m³] SMESelectrical E = ½*L*I² *η (w) Condensatorelectrical E = ½*C*U² *η (w) 0,1... 0,3 Fly Wheelmechanical E = ½*J x *ω² *η (w) Batterychemical E = Q*U Z *η (w) Pumped Hydromechanical E = V*ρ*g*h *η (w) 0,2... 1,2 CAES (Air)mechanical E = V*c v *(T/v) NTP *(r-r 1/κ ) *η (w) Hydrogenchemical E = p*V/(R*T)*H i *η (w)
Pumped Hydro Source:
CAES (Air) Source:
Hydrogen storage pathways Energy Management System Electrolysis H 2 -Storage Electric grid CHP Central Power Plant Comm erce O2O2 H2H2 Chemical use Mobility Feed-in to be prefered!
1.Intention of hydrogen as an energy carrier 2.(current) Use of hydrogen in chemistry 3.(future) Production of hydrogen in the energy supply chain 4.(future) Utilisation of hydrogen in the energy supply chain 5.Summary Structure
H 2 in chemistry Current situation production of appr. 600 x 10 9 Nm³ hydrogen per year by steam reforming of natural gas partial oxidation of heavy oil feedstocks coal gasification byproduct (NaCl-electrolysis, refinery et al.) alternative technologies < 1% usage mainly in chemichal industry (metals, glas, semiconductors, MeOH, NH 3, refinery) excellent knowledge about materials and handling yet no notable usage in energy supply
1.Intention of hydrogen as an energy carrier 2.(current) Use of hydrogen in chemistry 3.(future) Production of hydrogen in the energy supply chain 4.(future) Utilisation of hydrogen in the energy supply chain 5.Summary Structure
Principles Conventional feedstocksRenewable feedstocks CH 4 (steam reforming)H 2 (wind & solar fed electrolysis) C n H 2n (partial oxidation)Bio - CH 4 (steam reforming) C 135 H 96 O 9 NS (coal gasification)Bio – CH 4 O (methanol reforming) H 2 (nuclear fed electrolysis)Bio - C 2 H 6 O (ethanol reforming) C 12 H 22 O 11 (wood / BtH)
Source: Energietechnik mit Wasserstoff und Brennstoffzellen, Sommerseminar an der FH Lübeck, Half cell reactions Cathode (+) ½O 2 + 2H + + 2e - ↔ H 2 OE 0 = 1,23 V Anode (-) H 2 ↔ 2H + + 2e - E 0 = 0,00 V Over all reaction Fuel cell H 2 + ½O 2 → H 2 O E 0 = 1,23 V Electrolysis H 2 + ½O 2 ← H 2 O E 0 = 1,48 V Electrolysis: Basics (1/3)
Source: Fraunhofer ISE Electrolysis: Basics (2/3)
Source: Energietechnik mit Wasserstoff und Brennstoffzellen, Sommerseminar an der FH Lübeck, H 2 + ½O 2 ← H 2 O Cell voltageU = 1,48 25 °C, 1 bar Heating value (H s )E = 3,5 kWh / Nm³ H 2 = 12,6 MJ / Nm³ H 2 Water needV = 0,805 dm³ / Nm³ H 2 Faraday-Constant 1/F = 2,39 kAh / Nm³ H 2 Real cell voltages are higher due to Ohmic losses (electrolyte, diaphragma) Wiring losses Electrochemical over-voltages (cathodic, anodic), caused by mass transport and electrical field phenomena Electrolysis: Basics (3/3)
+-e-e- e-e- 4H 2 O + 4e - → 2H 2 + 4OH - 4OH - → O 2 + 2H 2 O + 4e - AK OH - H2OH2O Alkaline Electrolysis
+-e-e- e-e- 2H 2 O → 4H + + 4e - + O 2 4H + + 4e - → 2H 2 AK H+H+ H2OH2O Acidic Electrolysis
Acidic el.Alcaline el. Temperature [°C] Pressure [Mpa]< 30 Power range [kW]1 – 1001 – Current density [kA/m ²]< 102 –5 Cell voltage [V]1,7 – 2,1 Spec. Energy consumption [kWh/Nm³ H 2 ] 4,1 – 4,9 Efficiency, based on Hu [%] – 75 CatalystsK: Pt / A: IrK: Stahl / A: Ni System comparison More details:
Hydrogen storage pathways Energy Management System Electrolysis H 2 -Storage Electric grid CHP Central Power Plant Comm erce O2O2 H2H2 Chemical use Mobility Feed-in to be prefered!
Effect Cap (101 GWh = 0,8 %) Electrolysis (1.083 GWh = 8,3 %) Feed-in ( GWh = 90,9 %) Data:
Renewable potential Ex. 1: eon control region GWh 253 Mio Nm³ H 2 t H 2 Ex. 2: Vattenfall control region GWh 193 Mio Nm³ H 2 t H 2 Ex. 3: Offshore-scenario Schleswig-Holstein 2015 (2,24 GW) 357 GWh 83 Mio Nm³ H 2 t H 2 η Electrolysis = 70 % H u = 3,00 kWh/Nm³ ρ = 0,089 kg/Nm³
Saline storage options Saline caverns with net volume V = m³ are creatable Pressure range depends on depth (p = bar at m) Suitability of saline caverns for H 2 -storage is proven (Teesside/UK, Texas/USA) pics: KBB Underground Technologies GmbH
1.Intention of hydrogen as an energy carrier 2.(current) Use of hydrogen in chemistry 3.(future) Production of hydrogen in the energy supply chain 4.(future) Utilisation of hydrogen in the energy supply chain 5.Summary Structure
Ex. mobile usage Ex. 1: Fahrzeuge Ex. 2: Fahrzeuge Ex. 3: Fahrzeuge GM Chevrolet km / 1,4 kg H 2 / 100 km Ex. 1: 1923 Fahrzeuge Ex. 2: Fahrzeuge Ex. 3: 632 Fahrzeuge MAN km / 13 kg H 2 / 100 km
Ex. stationary usage option micro-CHP Ex. 1: x 2 kW Ex. 2: x 2 kW Ex. 3: x h / η el = 25 % Ex. 1: 265 x 200 kW Ex. 2: 202 x 200 kW Ex. 3: 87 x 200 kW option h / η el = 35 % Ex. 1: 75,9 MW Ex. 2: 57,9 MW Ex. 3: 24,9 MW option h / η el = 40 %
1.Intention of hydrogen as an energy carrier 2.(current) Use of hydrogen in chemistry 3.(future) Production of hydrogen in the energy supply chain 4.(future) Utilisation of hydrogen in the energy supply chain 5.Summary Structure
Summary 1.Energy markets tend to be more renewable and more electrical 2.Fluctuations in renewable power generations require large capacities for load leveling 3.Hydrogen technology offers high storage capacities as well as sustainable supply options for mobile and stationary power needs