Objective - To recognize and order integers and to evaluate absolute values. Integers -The set of positive whole numbers, negative whole numbers, and zero. {…-3, -2, -1, 0, 1, 2, 3…} Positive Integers Negative Integers Origin
Draw a number line and graph the integers. 1) A=6, B= -2, C=5, D=3, E= -4, F= ABCDEF 2) G=1, H=2, I=4, J= -6, K= -5, L= LKIHJG
State an integer that represents the given situation. 1) A gain of 5 yards 2) A loss of 20 gallons 3) A deposit of $342 4) A penalty of 20 points 5) A profit of $38 6) A withdrawal of $12 7) 2 hours before lunch 8) 30 above zero
LargerSmaller Ordering Integers Use to compare. 1) ) ) ) ) ) ) ) < < > > > < > >
Place the following integers in order from smallest to greatest. 1) -6, -16, -10, 61, -61 2) -34, -43, 13, -31, -3 3) -5, -9, 9, 15, , -16, -10, -6, , -34, -31, -3, , -9, -5, 9, 15
Write the following integers in order from greatest to least. 1) -3, 17, 5, -2, 0, 4 2) -8, -7, 15, -15, -1, 3 3) 40, -4, -400, 4, 14, , 5, 4, 0, -2 15, 3, -1, -7, -8 40, 14, 4, -4, -41, -3, -15, -400
Absolute Value Absolute Value -The distance a given number is from zero on the number line Simplify. 1) 2) 3) 4) 5) 6)
IntegerOppositeAbsolute Value
Use, or = to compare. 1) 2) 3) 4) 6) 7) 8) 9) > < = < > < < = 5)10) = >
Solve. 1) 2) 3) 4)
t = or Solve each equation below. 1) 2) 3) 4) 5) 6) x = 10 or -10 x = 4 or - 4 x = 0 “no solution” x = 14 or
Determine whether each statement is true always, sometimes, or never for all real numbers. 1) 2) 3) 4) 5) 6) sometimes always sometimes never sometimes always
Counterexamples To prove a statement true, it must be proven true for all examples - difficult! Counterexample -An example that proves a statement false. Statement: All pets are furry. Counterexample: Goldfish. Statement: Counterexample:
Determine whether each statement is true or false for all real numbers. If it is false, find a counter- example that proves it is false. 1) 2) 3) 4) 5) 6) False, x = 0 False, x = -7 False, x = -5 True