Status of Higher Order QCD Calculations Aude Gehrmann-De Ridder ICHEP 2010Status of Higher Order QCD Calculations.

Slides:



Advertisements
Similar presentations
Jet cross sections at NNLO accuracy Thomas Gehrmann, Universität Zürich The first three years of the LHC - MITP 2013.
Advertisements

Today’s algorithm for computation of loop corrections Dim. reg. Graph generation QGRAF, GRACE, FeynArts Reduction of integrals IBP id., Tensor red. Evaluation.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
QCD at the LHC: What needs to be done? West Coast LHC Meeting Zvi Bern, UCLA Part 2: Higher Order QCD.
Peter Uwer *) Universität Karlsruhe *) Financed through Heisenberg fellowship and SFB-TR09 Workshop on massive particle production at the LHC —— October,
Les Houches 14 th June1 Matching Matrix Elements and Parton Showers Peter Richardson IPPP, Durham University.
Multi-Parton QCD Amplitudes For The LHC. Harald Ita, UCLA Based on: arXiv: ; arXiv: ; arXiv: In collaboration with: Carola Berger,
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Universality in W+Jet Production David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration Z. Bern, L. Dixon,
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
The Dipole-Antenna approach to Shower Monte Carlo's W. Giele, HP2 workshop, ETH Zurich, 09/08/06 Introduction Color ordering and Antenna factorization.
Perturbative Stability of V + Jets Ratios and “Data Driven Background” Analyses Lance Dixon (CERN & SLAC) & for the BlackHat collaboration C. Berger, Z.
Universality in W+Jet Production David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration Z. Bern, L. Dixon,
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
Evaluating Semi-Analytic NLO Cross-Sections Walter Giele LoopFest 2006 SLAC 06/21/06 Nigel Glover and W.G.: hep-ph/ Giulia Zanderighi, Nigel Glover.
Measurement of α s at NNLO in e+e- annihilation Hasko Stenzel, JLU Giessen, DIS2008.
From LoopFest VI: The Road Ahead David A. Kosower Fermilab, April 18, 2007.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
1 On-Shell Methods for Precision Calculations for the LHC Princeton LHC Workshop, March 23, 2007 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren.
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
MCFM and techniques for one-loop diagrams. R. Keith Ellis Fermilab Berkeley Workshop on Boson+Jets Production, March 2008.
A Calculational Formalism for One- Loop Integrals Introduction Goals Tensor Integrals as Building Blocks Numerical Evaluating of Tensor Integrals Outlook.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Universality in W+Multijet Production David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration Z. Bern, L.
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
Universality in W+Jet Production David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration Z. Bern, L. Dixon,
Recent Developments in Perturbative QCD Lance Dixon, SLAC DIS 2005 Madison, April 27, 2005.
Th.Diakonidis - ACAT2010 Jaipur, India1 Calculating one loop multileg processes A program for the case of In collaboration with B.Tausk ( T.Riemann & J.
11/28/20151 QCD resummation in Higgs Boson Plus Jet Production Feng Yuan Lawrence Berkeley National Laboratory Ref: Peng Sun, C.-P. Yuan, Feng Yuan, PRL.
The SAMPER project (Semi-numerical AMPlitude EvaluatoR) W. Giele, TeV4LHC, 20/10/05 Giulia Zanderighi, Keith Ellis and Walter Giele. hep-ph/ hep-ph/
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
Peter Uwer *) Universität Karlsruhe *) Financed through Heisenberg fellowship and SFB-TR09 LoopFest VII May, 2008, Buffalo NLO QCD corrections to WW +
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
NLO Vector+Jets Predictions with B LACK H AT & SHERPA David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration.
Peter Uwer *) Universität Karlsruhe *) Funded through Heisenberg fellowship and SFB-TR09 Radcor 07 —— October 1-5, 2007, Galileo Galilei Institute, Florence.
On-Shell Methods in QCD: First Digits for BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration.
1 NLO Theory for SUSY Searches TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A October 19, 2011 Zvi Bern, UCLA (on.
W + n jet production at NLO Lance Dixon (SLAC) representing the BlackHat Collaboration C. Berger, Z. Bern, L.D., F. Febres Cordero, D. Forde, T. Gleisberg,
The Two-Loop Anomalous Dimension Matrix for Soft Gluon Exchange S. M. Aybat, L.D., G. Sterman hep-ph/ , Workshop HP 2, ETH Zürich September.
V +Jets at Next-to-Leading Order with BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration Carola.
QM 3 rd April1 Collider Phenomenology Peter Richardson IPPP, Durham University.
Recent Advances in NLO QCD (V-boson+jets) Harald Ita, (UCLA+NSF TI-fellow) US ATLAS Hadronic Final State Forum SLAC, Aug 23 rd 2010 In collaboration with.
Status of NLO Calculations for V + Jets Lance Dixon (CERN & SLAC) & for the BlackHat collaboration C. Berger, Z. Bern, LD, F. Febres Cordero, D. Forde,
Modern Approach to Monte Carlo’s (L1) The role of resolution in Monte Carlo’s (L1) Leading order Monte Carlo’s (L1) Next-to-Leading order Monte Carlo’s.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Vectors + Multijet Theory with B LACK H AT and Sherpa David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration.
The B LACK H AT ( 黑帽 ) Library for One-Loop Amplitudes David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration.
Next Generation of Parton Shower Models and Validation W. Giele, CTEQ workshop “Physics at the LHC: Early Challenges”, 05/14/07 Introduction A new parton.
June 19, 2007 Manchester1 High-Energy Electroweak Physics Parallel Session Zoltan Kunszt, ETH, Zurich Unitarity Cuts and Reduction of Master Integrals.
QCD Summary Report S. Ellis U. of Washington “Gee, I sure hope Joey wrote me a good talk.”
From Maximal Helicity to Maximal Jets David A. Kosower Institut de Physique Théorique, CEA–Saclay and Institute for Advanced Study 30 Fermilab, March.
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
A T : novel variable to study low transverse momentum vector boson production at hadron colliders. Rosa María Durán Delgado The University of Manchester.
One-Loop Multi-Parton Amplitudes for The LHC.
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
NLO W/Z + Jets with BlackHat and Sherpa
Unitarity Methods in Quantum Field Theory
On-Shell Meets Observation or, the Rubber Meets the Road
Higgs Maxwell Workshop: Current Status and Future Prospects “Theory Forward Look” James Stirling Cambridge University Higgs-Maxwell 2009.
QCD Radiative Corrections for the LHC
Evaluating Semi-Analytic NLO Cross-Sections
Modern Methods for Loop Calculations of Amplitudes with Many Legs
NLO-QCD bottom corrections to Higgs boson production in the MSSM
Beyond Feynman Diagrams
Single Diffractive Higgs Production at the LHC *
Computation of Multi-Jet QCD Amplitudes at NLO
Presentation transcript:

Status of Higher Order QCD Calculations Aude Gehrmann-De Ridder ICHEP 2010Status of Higher Order QCD Calculations

 QCD: successful theory of strong interactions  QCD is omnipresent in high energy collisions  Detailed understanding of QCD mandatory for  Interpretation of collider data  Precision studies  Searches for new physics QCD at High Energy Colliders QCD effects initial state: parton distributions final state: jets hard scattering matrix elements with multiple radiation ICHEP 2010Status of Higher Order QCD Calculations

 LHC brings new frontiers in energy and luminosity  Production of short-lived heavy states (Higgs, SUSY,…)  detected through their decay products  yield multi-particle final states involving jets, leptons, γ, E T  Search for new effects in multi-particle final states  typically involving jets  need to understand signal and background processes  Require precise predictions: NLO ICHEP 2010Status of Higher Order QCD Calculations Expectations at LHC Example: SUSY signature: 3j + E T / /

 Large production rates for Standard Model processes  jets  top quark pairs  vector bosons  Allow precision measurements  masses  couplings  parton distributions  Require precise theory: NNLO ICHEP 2010Status of Higher Order QCD Calculations Expectations at LHC J. Stirling

 Multiparticle production at NLO  Precision observables at NNLO ICHEP 2010Status of Higher Order QCD Calculations Outline

 Why NLO?  reduce uncertainty of theory prediction  reliable normalization and shape  accounts for effects of extra radiation  jet algorithm dependence  Require two principal ingredients (here: pp → 3j)  one-loop matrix elements  explicit infrared poles from loop integral  known for all 2 → 2 processes  known for many 2 → 3 processes  current frontier 2 → 4: major challenge  tree-level matrix elements  implicit poles from soft/collinear emission ICHEP 2010Status of Higher Order QCD Calculations NLO Multiparticle Production

 Combining virtual and real emission  extract process-independent implicit poles from real emission  residue subtraction (S. Frixione, Z. Kunszt, A. Signer)  dipole subtraction (S. Catani, S. Dittmaier, M. Seymour, Z. Trocsanyi)  antenna subtraction (D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover; A. Daleo, T. Gehrmann, D. Maitre, M. Ritzmann, AG)  Automated subtraction tools  dipole method: SHERPA (T. Gleisberg, F. Krauss), MadDipole (R. Frederix, T. Gehrmann, N. Greiner), TeVJet (M. Seymour, C. Tevlin), Helac/Phegas (M. Czakon, C. Papadopoulos, M. Worek)  residue method: MadFKS (R. Frederix, S. Frixione, F. Maltoni, T. Stelzer) Bottleneck up to now: one-loop multileg matrix elements ICHEP 2010Status of Higher Order QCD Calculations NLO Multiparticle Production

 General structure  One-loop scalar integrals known analytically (K. Ellis, G. Zanderighi; A. Denner, S. Dittmaier)  Task: compute integral coefficients  Challenges  complexity: number of diagrams, number of scales  stability: linear dependence among external momenta  Enormous progress using two approaches  traditional: Feynman diagram based  unitarity based: reconstruct integral coefficients from cuts ICHEP 2010Status of Higher Order QCD Calculations NLO: One-loop multi-leg amplitudes

 Based on one-loop Feynman diagrams  contain high-rank tensor integrals  reduced to basis integrals: with analytical (A. Denner, S. Dittmaier) or semi-numerical (GOLEM: T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert) approach  Successfully applied in first complete 2 → 4 calculation: (A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini) see talk by S. Dittmaier  and in many 2 → 3 processes ICHEP 2010Status of Higher Order QCD Calculations NLO multi-leg: traditional approach

 Generalized unitarity  apply multi-particle cuts: one or more loop propagators on- shell (Z. Bern, L. Dixon, D. Dunbar, D. Kosower, R. Britto, F. Cachazo, B. Feng; P. Mastrolia; D. Forde)  result: integral coefficients are products of tree-level amplitudes evaluated at complex momenta  Reduction at integrand level (OPP: G. Ossola, C. Papadopoulos, R. Pittau)  Rational terms not determined by unitarity  Special recursion relations (C. Berger et al.)  Feynman diagram approach (OPP)  D-dimensional unitarity (R. Ellis, W. Giele, Z. Kunszt, K. Melnikov)  Algorithmic procedure: can be automated ICHEP 2010Status of Higher Order QCD Calculations NLO multi-leg: unitarity-based method

 Virtual corrections: implementations  semi-numerical form factor decomposition: GOLEM (T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter)  unitarity and multi-particle cuts: BlackHat (C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maitre)  reduction at integrand level: CutTools (G. Ossola, C. Papadopoulos, R. Pittau)  generalized D-dimensional unitarity: Rocket (W. Giele, G. Zanderighi)  generalized D-dimensional unitarity: Samurai (P. Mastrolia, G. Ossola, T. Reiter, F. Tranmontano)  several more packages in progress (A. Lazopoulos; W. Giele, Z. Kunszt, J. Winter; K. Melnikov, M. Schulze) ICHEP 2010Status of Higher Order QCD Calculations Automating NLO calculations

The Les Houches Wish List (2010) CERN HO10 L. Dixon Feynman diagram methods now joined by unitarity based methods Berger

 Calculations of W ± + 3j  Blackhat + Sherpa (C.F. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. Kosower, D. Maitre)  Rocket (R.K. Ellis, K. Melnikov, G. Zanderighi)  excellent description of Tevatron data  moderate corrections  precise predictions  rich phenomenology  Calculation of Z 0 + 3j (Blackhat + Sherpa)  Ongoing: W ± + 4j (Blackhat + Sherpa) (see talk by D. Kosower) NLO multileg: W ± + 3j, Z 0 + 3j ICHEP 2010Status of Higher Order QCD Calculations

 Processes measured to few per cent accuracy  e + e - → 3 jets  2+1 jet production in deep inelastic scattering  hadron collider processes:  jet production  vector boson (+jet) production  top quark pair production  Processes with potentially large perturbative corrections  Higgs or vector boson pair production  Require NNLO corrections for  meaningful interpretation of experimental data  precise determination of fundamental parameters ICHEP 2010Status of Higher Order QCD Calculations Where are NNLO corrections needed?

 fully inclusive observables  total cross sections: R-ratio, Drell-Yan and Higgs production  structure functions in deep inelastic scattering  evolution of parton distributions  Higgs production in vector boson fusion (P. Bolzoni, F. Maltoni, S. Moch, M. Zaro)  single differential observables  rapidity distribution in Drell-Yan process (C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello)  fully differential observables  colourless high mass system including decays  jet production ICHEP 2010Status of Higher Order QCD Calculations What is known to NNLO?

 Require three principal ingredients (here: pp → 2j)  two-loop matrix elements  explicit infrared poles from loop integral  known for all massless 2 → 2 processes  one-loop matrix elements  explicit infrared poles from loop integral  and implicit poles from soft/collinear emission  usually known from NLO calculations  tree-level matrix elements  implicit poles from two partons unresolved  known from LO calculations  Challenge: combine contributions into parton-level generator  need method to extract implicit infrared poles ICHEP 2010Status of Higher Order QCD Calculations NNLO calculations

 Solutions  sector decomposition: expansion in distributions, numerical integration (T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello; M. Czakon)  subtraction: add and subtract counter-terms: process- independent approximations in all unresolved limits, analytical integration  several well-established methods at NLO  NNLO for specific hadron collider processes: q T subtraction (S. Catani, M. Grazzini)  NNLO for e + e - processes: antenna subtraction (T. Gehrman, E.W.N. Glover, AG) ICHEP 2010Status of Higher Order QCD Calculations NNLO calculations

 Dominant production process: gluon fusion  exclusive calculations to NNLO, including H decay  using sector decompostion (C. Anastasiou, K. Melnikov, F. Petriello)  using q T -subtraction (S. Catani, M. Grazzini)  Application: Higgs at Tevatron H → WW → l ν l ν  all distributions to NNLO (C. Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, B. Webber)  cuts on jet activity  neural-network output to NNLO ICHEP 2010Status of Higher Order QCD Calculations Higgs boson production at NNLO

 Fully exclusive calculations  parton-level event generator  using sector decomposition (K. Melnikov, F. Pertriello)  using q T subtraction (S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini)  including vector boson decay  allowing arbitrary final-state cuts  Application: lepton charge asymmetry (S. Catani, G. Ferrera, M. Grazzini)  small NNLO corrections  determine quark distributions Vector boson production at NNLO ICHEP 2010Status of Higher Order QCD Calculations

 Two calculations of NNLO corrections to e + e - → 3 jets  using antenna subtraction (T. Gehrmann, E.W.N. Glover, G. Heinrich, AG; S. Weinzierl)  as parton-level event generator  allow evaluation of event shapes and jet rates  improved description of data with reduced scale uncertainty  one per cent for three-jet rate  use to extract α s from LEP data: α s (M Z ) = ±0.0020(exp)±0.0015(th) Jet production at NNLO: e + e - collisions ICHEP 2010Status of Higher Order QCD Calculations

 two-loop matrix elements known for  two-jet production (C. Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans; Z. Bern, A. De Freitas, L. Dixon)  vector-boson-plus-jet production (T. Gehrmann, E. Remiddi)  (2+1) jet production in DIS (T. Gehrmann, E.W.N. Glover)  antenna subtraction formalism at NNLO: with radiators in initial state NNLO jet cross sections at hadron colliders final-final initial-final initial-initial ICHEP 2010Status of Higher Order QCD Calculations

 First implementation of antenna subtraction  gg → 4g subtraction constructed and tested (E.W.N. Glover, J. Pires)  Integration of antenna functions  final-final antennae known  initial-final antennae derived recently: sufficient for (2+1) jets in DIS (A. Daleo, T. Gehrmann, G. Luisoni, AG)  initial-initial in progress (R. Boughezal, M. Ritzmann, AG)  Top pair production at NNLO  In progress (see talk of R. Bonciani) ICHEP 2010Status of Higher Order QCD Calculations NNLO jet cross sections at hadron colliders

 QCD is crucial for the success of LHC physics  interpretation of collider data  searches for new physics  precision studies  Particle theory is getting ready  impressive progress in automated multiparticle NLO cross sections  high precision NNLO calculations for fully differential observables in benchmark processes are in progress ICHEP 2010Status of Higher Order QCD Calculations Conclusions and Outlook