Solving Quadratic Equations by Factoring 8-6

Slides:



Advertisements
Similar presentations
Solving Quadratic Equations
Advertisements

7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
5-4 Completing the Square Warm Up Lesson Presentation Lesson Quiz
Solving Quadratic Equations by Graphing 9-5
The Quadratic Formula 9-9 and the Discriminant Warm Up
The Quadratic Formula 9-9 and the Discriminant Warm Up
Graphing Quadratic Functions
Solving Quadratic Equations by Using Square Roots 8-7
Objective Solve quadratic equations by completing the square.
The Quadratic Formula 8-9 and the Discriminant Warm Up
CONFIDENTIAL 1 Grade 8 Algebra1 Solving Quadratic Equations by Factoring.
Non linear system. Warm Up Solve each quadratic equation by factoring. Check your answer. 5, x 2 - 3x - 10 = x x = Find the number.
8-10 Nonlinear Systems Warm Up Lesson Presentation Lesson Quiz
Solving Quadratic Equations by Graphing 9-5
Holt McDougal Algebra Completing the Square Solve quadratic equations by completing the square. Write quadratic equations in vertex form. Objectives.
Objectives Solve quadratic equations by graphing or factoring.
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Objectives Solve quadratic equations by graphing or factoring.
Perfect Squares Lesson 8-9 Splash Screen.
Holt Algebra The Quadratic Formula and the Discriminant Warm Up (Add to HW & Pass Back Papers) Evaluate for x =–2, y = 3, and z = – x 2 2.
Solving Quadratic Equations by Factoring 8-6
Factoring to Solve Quadratic Equations
Over Lesson 8–5 A.A B.B C.C D.D 5-Minute Check 1 (x + 11)(x – 11) Factor x 2 – 121.
Holt Algebra Solving Quadratic Equations by Graphing and Factoring Solve quadratic equations by factoring. Find roots of quadratic equations. Graph.
Example 1A Solve the equation. Check your answer. (x – 7)(x + 2) = 0
Solving Quadratic Equations by Graphing 8-5
9-4 Solving Quadratic Equations by Graphing Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
9-5 Solving Quadratic Equations by Factoring Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Holt Algebra Solving Quadratic Equations by Factoring Warm Up Find each product. 1. (x + 2)(x + 7)2. (x – 11)(x + 5) 3. (x – 10) 2 Factor each polynomial.
Objective Solve quadratic equations by factoring..
Warm Up Find each product. 1. (x + 2)(x + 7) 2. (x – 11)(x + 5)
Objective I will use square roots to evaluate radical expressions and equations. Algebra.
Factoring Polynomials.
Warm Up x = 0 x = 1 (–2, 1) (0, 2) Find the axis of symmetry.
Chapter 9 - Quadratic Functions and Equations
Chapter 9 - Quadratic Functions and Equations
Holt McDougal Algebra The Quadratic Formula and the Discriminant 8-9 The Quadratic Formula and the Discriminant Holt Algebra 1 Warm Up Warm Up Lesson.
Holt McDougal Algebra Nonlinear Systems Recall that a system of linear equations is a set of two or more linear equations. A solution of a system.
Factoring, Solving Quadratic Equtions with a  1 (8-4)
Solving Quadratic Equations by Graphing 8-5
How do we compare properties of two functions?
Identifying Quadratic Functions
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Solving Quadratic Equations by Graphing 8-5
Solving Quadratic Equations by Factoring 8-6
Solving Quadratic Equations by Graphing 8-5
The Quadratic Formula 8-9 and the Discriminant Warm Up
Solving Quadratic Equations by Factoring 8-6
Warm Up: Solve by factoring      .
Warm Up Evaluate for x =–2, y = 3, and z = –1. 1. x2 2. xyz 3. x2 – yz
Objective Solve quadratic equations by factoring..
Solving Quadratic Equations by Factoring 9-6
Solving Quadratic Equations by Factoring 9-6
8-8 Completing the Square Warm Up Lesson Presentation Lesson Quiz
Real World Problem Solving Quadratic Equations 8
Solving Quadratic Equations by Graphing 8-5
Solving Quadratic Equations by Graphing 9-5
8-10 Nonlinear Systems Warm Up Lesson Presentation Lesson Quiz
Solving Quadratic Equations by Factoring 8-6
Solving Quadratic Equations by Factoring 9-6
 .
Solving Equations by 1-2 Adding or Subtracting Warm Up
Solving Equations by 1.2 Adding or Subtracting Warm Up
Warm Up: Factor each expression    .
Solving Quadratic Equations by Graphing 8-5
Solving Quadratic Equations by Graphing 9-5
Presentation transcript:

Solving Quadratic Equations by Factoring 8-6 Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 1 Holt Algebra 1

Objective Solve quadratic equations by factoring.

If a quadratic equation is written in standard form, ax2 + bx + c = 0, then to solve the equation, you may need to factor before using the Zero Product Property.

Example 2A: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 – 6x + 8 = 0 (x – 4)(x – 2) = 0 Factor the trinomial. x – 4 = 0 or x – 2 = 0 Use the Zero Product Property. x = 4 or x = 2 The solutions are 4 and 2. Solve each equation. x2 – 6x + 8 = 0 (4)2 – 6(4) + 8 0 16 – 24 + 8 0 0 0  Check x2 – 6x + 8 = 0 (2)2 – 6(2) + 8 0 4 – 12 + 8 0 0 0  Check

Example 2B: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 + 4x = 21 The equation must be written in standard form. So subtract 21 from both sides. x2 + 4x = 21 –21 –21 x2 + 4x – 21 = 0 (x + 7)(x –3) = 0 Factor the trinomial. x + 7 = 0 or x – 3 = 0 Use the Zero Product Property. x = –7 or x = 3 The solutions are –7 and 3. Solve each equation.

Example 2C: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 – 12x + 36 = 0 (x – 6)(x – 6) = 0 Factor the trinomial. x – 6 = 0 or x – 6 = 0 Use the Zero Product Property. x = 6 or x = 6 Solve each equation. Both factors result in the same solution, so there is one solution, 6.

Example 2D: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. –2x2 = 20x + 50 +2x2 +2x2 0 = 2x2 + 20x + 50 –2x2 = 20x + 50 The equation must be written in standard form. So add 2x2 to both sides. 2x2 + 20x + 50 = 0 Factor out the GCF 2. 2(x2 + 10x + 25) = 0 Factor the trinomial. 2(x + 5)(x + 5) = 0 2 ≠ 0 or x + 5 = 0 Use the Zero Product Property. x = –5 Solve the equation.

Example 2D Continued Solve the quadratic equation by factoring. Check your answer. –2x2 = 20x + 50 Check –2x2 = 20x + 50 –2(–5)2 20(–5) + 50 –50 –100 + 50 –50 –50  Substitute –5 into the original equation.

Check It Out! Example 2a Solve the quadratic equation by factoring. Check your answer. x2 – 6x + 9 = 0 (x – 3)(x – 3) = 0 Factor the trinomial. x – 3 = 0 or x – 3 = 0 Use the Zero Product Property. x = 3 or x = 3 Solve each equation. Both equations result in the same solution, so there is one solution, 3. x2 – 6x + 9 = 0 (3)2 – 6(3) + 9 0 9 – 18 + 9 0 0 0  Check Substitute 3 into the original equation.

Solve the quadratic equation by factoring. Check your answer. Check It Out! Example 2b Solve the quadratic equation by factoring. Check your answer. x2 + 4x = 5 Write the equation in standard form. Add – 5 to both sides. x2 + 4x = 5 –5 –5 x2 + 4x – 5 = 0 (x – 1)(x + 5) = 0 Factor the trinomial. x – 1 = 0 or x + 5 = 0 Use the Zero Product Property. x = 1 or x = –5 Solve each equation. The solutions are 1 and –5.

Check It Out! Example 2b Continued Solve the quadratic equation by factoring. Check your answer. x2 + 4x = 5 Check Graph the related quadratic function. The zeros of the related function should be the same as the solutions from factoring. ● The graph of y = x2 + 4x – 5 shows that the two zeros appear to be 1 and –5, the same as the solutions from factoring. 

Check It Out! Example 2d Solve the quadratic equation by factoring. Check your answer. 3x2 – 4x + 1 = 0 (3x – 1)(x – 1) = 0 Factor the trinomial. 3x – 1 = 0 or x – 1 = 0 Use the Zero Product Property. or x = 1 Solve each equation. The solutions are and x = 1.

Check It Out! Example 2d Continued Solve the quadratic equation by factoring. Check your answer. 3x2 – 4x + 1 = 0 3x2 – 4x + 1 = 0 3 – 4 + 1 0 0 0  Check 3x2 – 4x + 1 = 0 3(1)2 – 4(1) + 1 0 3 – 4 + 1 0 0 0  Check

Example 3: Application The height in feet of a diver above the water can be modeled by h(t) = –16t2 + 8t + 8, where t is time in seconds after the diver jumps off a platform. Find the time it takes for the diver to reach the water. h = –16t2 + 8t + 8 The diver reaches the water when h = 0. 0 = –16t2 + 8t + 8 0 = –8(2t2 – t – 1) Factor out the GFC, –8. 0 = –8(2t + 1)(t – 1) Factor the trinomial.

  Example 3 Continued Use the Zero Product Property. –8 ≠ 0, 2t + 1 = 0 or t – 1= 0 2t = –1 or t = 1 Solve each equation. Since time cannot be negative, does not make sense in this situation.  It takes the diver 1 second to reach the water. Check 0 = –16t2 + 8t + 8 0 –16(1)2 + 8(1) + 8 0 –16 + 8 + 8 0 0 Substitute 1 into the original equation. 

Lesson Quiz: Part II 5. 2x2 + 12x – 14 = 0 1, –7 6. x2 + 18x + 81 = 0 –9 7. –4x2 = 16x + 16 –2 8. The height of a rocket launched upward from a 160 foot cliff is modeled by the function h(t) = –16t2 + 48t + 160, where h is height in feet and t is time in seconds. Find the time it takes the rocket to reach the ground at the bottom of the cliff. 5 s