1 MRA 1dim / 2dim LLLLLLHL LLLHLLHH HH HL LH
2 2-Dim Haar Base Functions Standard construction The standard construction of a two-dimensional wavelet basis consists of all possible tensor products of one-dimensional basis functions.
3 2-Dim Haar Base Functions for V 2 Standard construction x y
4 x y
5 Standard Decomposition1dim LLLL HL LL HLLHLH HL LL H LLLHLLHLH
6 Standard Decomposition2dim
7 HL HL HL HL HL HL HL HL
8 LLHLH LL H LL H LL H LL H LL H LL H LL H
9 Standard Decomposition2dim LLLHLLHLH LLLHLLHLH LLLHLLHLH LLLHLLHLH LLLHLLHLH LLLHLLHLH LLLHLLHLH LLLHLLHLH
10 Standard Decomposition2dim LLLL HL LL HLLHLH LLLL LL HLLHLH LLLL LL HLLHLH LLLL LL HLLHLH LLLL LL HLLHLH LLLL LL HLLHLH LLLL LL HLLHLH LLLL LL HLLHLH
11 LHLLHLH LLL HLL LHL HHL LH HH LLLLLLHL HLLLHLHL HLLHHLHH Row Col HHH HLL Standard Decomposition2dim - V 2
12 Standard Decomposition2dim - V 2 Row Column
13 Standard Decomposition2dim - V 3 Row Column
14 Decomposition1dim Decomposition ( c[1..2 j ] ) c := c/Sqrt(2 j ) // normalize g := 2 j WHILE g >= 2 DecompositionStep( c[1..g] ) g := g/2 ENDWHILE END
15 DecompositionStep1dim DecompositionStep ( c[1..2 j ] ) FOR i := 1 TO 2 j / 2 c’[i] := ( c[2i-1] + c[2i] ) / Sqrt(2) c’[2 j /2 + i] := ( c[2i-1] - c[2i] ) / Sqrt(2) ENDFOR c := c’ END
16 Reconstruction1dim Reconstruction ( c[1..2 j ] ) g := 2 WHILE g <= 2 j ReconstructionStep( c[1..g] ) g := 2 * g ENDWHILE c := c * Sqrt(2 j )// undo normalization END
17 ReconstructionStep1dim ReconstructionStep ( c[1..2 j ] ) FOR i := 1 TO 2 j / 2 c’[2i - 1] := ( c[i] + c[2 j / 2 + i] ) / Sqrt(2) c’[2i] := ( c[i] - c[2 j / 2 + i] ) / Sqrt(2) ENDFOR c := c’ END
18 Standard Decomposition2dim StandardDecomposition ( c[1..2 j,1..2 k ] ) FOR row := 1 TO 2 j Decomposition ( c[row,1..2 k ] ) ENDFOR FOR col := 1 TO 2 k Decomposition ( c[1..2 j,col] ) ENDFOR END
19 Standard Reconstruction2dim StandardReconstruction ( c[1..2 j,1..2 k ] ) FOR col := 1 TO 2 k Reconstruction ( c[1..2 j,col] ) ENDFOR FOR row := 1 TO 2 j Reconstruction ( c[row,1..2 k ] ) ENDFOR END
20 2-Dim Haar Base Functions Nonstandard construction The nonstandard construction of a two-dimensional wavelet basis consists of a single coarse scaling function along with scales and translates of three wavelet functions
21 2-Dim Haar Base Functions for V 2 Non-Standard construction ++- x y
22 2-Dim Haar Base Functions for V 2 Non-Standard construction x y
23 NonStandard Decomposition LH LLLLLHHL HH LLLLLLHL LLLHLLHH HH Row Col LLHL LHHHLH HL LH Row Col
24 NonStandard Decomposition2dim - V 2 RowColumn RowColumn
25 Row Column NonStandard Decomposition2dim - V 3
26 DecompositionStep1dim DecompositionStep ( c[1..2 j ] ) FOR i := 1 TO 2 j / 2 c’[i] := ( c[2i-1] + c[2i] ) / Sqrt(2) c’[2 j /2 + i] := ( c[2i-1] - c[2i] ) / Sqrt(2) ENDFOR c := c’ END
27 ReconstructionStep1dim ReconstructionStep ( c[1..2 j ] ) FOR i := 1 TO 2 j / 2 c’[2i - 1] := ( c[i] + c[2 j / 2 + i] ) / Sqrt(2) c’[2i] := ( c[i] - c[2 j / 2 + i] ) / Sqrt(2) ENDFOR c := c’ END
28 NonStandard Decomposition2dim NonStandardDecomposition ( c[1..2 j,1..2 j ] ) c = c/2 j g = 2 j WHILE g >= 2 FOR row = 1 TO g DecompositionStep(c[row,1..g]) ENDFOR FOR col = 1 TO g DecompositionStep(c[1..g,col]) ENDFOR g = g / 2 ENDWHILE END
29 NonStandard Reconstruction2dim NonStandardReconstruction ( c[1..2 j,1..2 j ] ) g = 2 WHILE g <= 2 j FOR col = 1 TO g ReconstructionStep(c[1..g,col]) ENDFOR FOR row = 1 TO g ReconstructionStep(c[row,1..g]) ENDFOR g = 2g ENDWHILE c = 2 j c END
30 DWT Java Implementation - DWT
31 DWT Java Implementation - class ImageDWT
32 DWT Java Implementation - set_hCoefficient
33 DWT Java Implementation - getGCoeff
34 DWT Java Implementation - fwd_DWT
35 DWT Java Implementation - inv_DWT
36 DWT Java Implementation - fwd_DWT_2D
37 DWT Java Implementation - inv_DWT_2D
38 DWT Java Implementation - decomposition_NonStandard
39 DWT Java Implementation - reconstruction_NonStandard
40 DWT Java Implementation - transpose
41 2D Forward Wavelet Transform
42 2D Inverse Wavelet Transform
43 End