Satellite Aerosol Validation Pawan Gupta NASA ARSET- AQ – GEPD & SESARM, Atlanta, GA September 1-3, 2015.

Slides:



Advertisements
Similar presentations
AeroStat: Online Platform for the Statistical Intercomparison of Aerosols Gregory Leptoukh, NASA/GSFC (P.I.) Chris Lynnes, NASA/GSFC (Acting P.I.) Peter.
Advertisements

Collection 6 Aerosol Products Becoming Available
Transition from MODIS AOD  VIIRS AOD
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
Liang APEIS Capacity Building Workshop on Integrated Environmental Monitoring of Asia-Pacific Region September 2002, Beijing,, China Atmospheric.
Climate & Radiation Laboratory, NASA Goddard Space Flight Center
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Introduction to Satellite Aerosol Products & Data Access Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of.
Climate & Radiation Laboratory, NASA Goddard Space Flight Center
Evaluating Remote Sensing Data Or How to Avoid Making Great Discoveries by Misinterpreting Data Richard Kleidman ARSET-AQ Applied Remote Sensing Education.
Visible Satellite Imagery Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of NASA Applied Sciences Week –
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Dust Detection in MODIS Image Spectral Thresholds based on Zhao et al., 2010 Pawan Gupta NASA Goddard Space Flight Center GEST/University of Maryland Baltimore.
Direct aerosol radiative forcing based on combined A-Train observations – challenges in deriving all-sky estimates Jens Redemann, Y. Shinozuka, M.Kacenelenbogen,
Application of Satellite Data to Particulate, Smoke and Dust Monitoring Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality.
Experiences Developing a Semantic Representation of Product Quality, Bias, and Uncertainty for a Satellite Data Product Patrick West 1, Gregory Leptoukh.
AeroStat: Online Platform for the Statistical Intercomparison of Aerosols Gregory Leptoukh, NASA/GSFC (P.I.) Christopher Lynnes, NASA/GSFC (Co-I.) Robert.
New MPLNET PBL Algorithm Reveals Previously Undetected Diurnal Variability Jasper Lewis, Code 612, NASA GSFC, Ellsworth Welton, Code 612, Andrea Molod,
Evaluation aerosol CCI satellite retrievals MACC assimilations Reading 2012.
VALIDATION OF SUOMI NPP/VIIRS OPERATIONAL AEROSOL PRODUCTS THROUGH MULTI-SENSOR INTERCOMPARISONS Huang, J. I. Laszlo, S. Kondragunta,
Giovanni for AQ Gregory Leptoukh NASA Goddard Space Flight Center Goddard Earth Sciences Data and Information Services Center (GES DISC)
1 AOD to PM2.5 to AQC – An excel sheet exercise ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan Gupta Salt.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Robert C. Levy (NASA-GSFC)
Collection 6 update: MODIS ‘Deep Blue’ aerosol Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Myeong-Jae Jeong, Jaehwa Lee.
The first decade OMI Near UV aerosol observations: An A-train algorithm Assessment of AOD and SSA The long-term OMAERUV record Omar Torres, Changwoo Ahn,
MAPSS and AeroStat: integrated analysis of aerosol measurements using Level 2 Data and Point Data in Giovanni Maksym Petrenko Charles Ichoku (with the.
Aerosols Observations from Satellites ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of NASA Applied Sciences Pawan Gupta.
T2 T1 (biomass burning aerosol) (dust) Findings (1) OMI and AATS AOD retrievals have been analyzed for four spatially and temporally near-coincident events.
NASA Aerosol (Particulate Matter) Products Pawan Gupta NASA ARSET- AQ On-line Short Course Fall 2013 ARSET - AQ Applied Remote SEnsing Training – Air Quality.
Direct aerosol radiative forcing based on combined A-Train observations and comparisons to IPCC-2007 results Jens Redemann, Y. Shinozuka, M. Vaughan, P.
NASA and Earth Science Applied Sciences Program
NASA Ocean Color Research Team Meeting, Silver Spring, Maryland 5-7 May 2014 II. Objectives Establish a high-quality long-term observational time series.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Satellite.
Robert Levy (NASA-GSFC)
QA filtering of individual pixels to enable a more accurate validation of aerosol products Maksym Petrenko Presented at MODIS Collection 7 and beyond Retreat.
Provenance in Earth Science Gregory Leptoukh NASA GSFC.
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
1 AOD to PM2.5 to AQC – An excel sheet exercise ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan Gupta NASA.
1 N. Christina Hsu, Deputy NPP Project Scientist Recent Update on MODIS C6 Deep Blue Aerosol Products and Beyond N. Christina Hsu, Corey Bettenhausen,
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Characterization of Aerosol Data Quality from MODIS for Coastal Regions Jacob Anderson Mentor: Gregory Leptoukh.
Introduction to Satellite Aerosol Products
High Resolution MODIS Aerosols Observations over Cities: Long Term Trends and Air Quality.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Validation strategy for aerosol retrievals of the future Lorraine Remer and J. Vanderlei Martins Dec
An Observationally-Constrained Global Dust Aerosol Optical Depth (AOD) DAVID A. RIDLEY 1, COLETTE L. HEALD 1, JASPER F. KOK 2, CHUN ZHAO 3 1. CIVIL AND.
GEWEX Aerosol Assessment Panel members Sundar Christopher, Rich Ferrare, Paul Ginoux, Stefan Kinne, Jeff Reid, Paul Stackhouse Program Lead : Hal Maring,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Intercomparison of satellite retrieved aerosol optical depth over ocean G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev,
Satellite Aerosol Comparative Analysis using the Multi-Sensor MAPSS and AeroStat, powered by Giovanni Presented at the Goddard Annual Aerosol Update, at.
International Ocean Color Science Meeting, Darmstadt, Germany, May 6-8, 2013 III. MODIS-Aqua normalized water leaving radiance nLw III.1. R2010 vs. R2012.
Lorraine Remer, Yoram Kaufman, Didier Tanré Shana Mattoo, Richard Kleidman, Robert Levy Vanderlei Martins, Allen Chu, Charles Ichoku, Rong-Rong Li, Ilan.
Characterization of the Station Fire, Los Angeles Aug. – Sept NASA Team MODIS Data products: Robert Levy Lorraine Remer N. Christina Hsu Charles.
Global Air Pollution Inferred from Satellite Remote Sensing Randall Martin, Dalhousie and Harvard-Smithsonian with contributions from Aaron van Donkelaar,
Introduction To Remote Sensing for Air Quality Application ARSET - AQ Applied Remote SEnsing Training – Air Quality A project of NASA Applied Sciences.
Navy Aerosol and Visibility Forecasting: Use of Satellite Aerosol Data
Extinction measurements
Vicarious calibration by liquid cloud target
Evaluating Remote Sensing Data
Need for TEMPO-ABI Synergy
Hiren Jethva1,2, Omar Torres2, Yasuko Yoshida3 1USRA/GESTAR
OVERVIEW OF THE AEROSTAT PROJECT
G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M. I. Mishchenko, I. V
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Global Climatology of Aerosol Optical Depth
Enza Di Tomaso, Jerónimo Escribano, Nick Schutgens,
Assessment of Satellite Ocean Color Products of the Coast of Martha’s Vineyard using AERONET-Ocean Color Measurements Hui Feng1, Heidi Sosik2 , and Tim.
Presentation transcript:

Satellite Aerosol Validation Pawan Gupta NASA ARSET- AQ – GEPD & SESARM, Atlanta, GA September 1-3, 2015

Spatial and Temporal Collocation

MODIS Dark Target AOD Uncertainties

Preliminary Validation Results of Collection 6

Validation Maps

Scatter Plot

Other Online Tools

MAPSS Giovanni instances Used to evaluate the quality of a satellite retrievals MAPSS allows you to compare AERONET data with coincident satellite data. Quick and effective way to evaluate the quality of the satellite retrieval at particular locations for a range of dates or season. Data from MODIS, MISR. Multi-sensor Aerosol Products Sampling System (MAPSS) Multi-sensor statistics Satellite – AERONET Inter-comparison

MAPSS Statistical Explorer

Petrenko, M., and C. M. Ichoku "Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors." Atmos. Chem. Phys., 13 (14): [ /acp ] [Journal Article/Letter] Petrenko, M., C. M. Ichoku, and G. Leptoukh "Multi-sensor Aerosol Products Sampling System (MAPSS)." Atmospheric Measurement Techniques, 5 (5): [ /amt ] [Journal Article/Letter]

Some Published Validation Papers Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C.. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6, 2989–3034. doi: /amt Remer, L. A., Mattoo, S., Levy, R. C., & Munchak, L. A.. (2013). MODIS 3 km aerosol product: algorithm and global perspective. Atmospheric Measurement Techniques, 6, 1829–1844. doi: /amt Sayer, A. M., N.-Y. C. Hsu, C. Bettenhausen, and M.-J. Jeong "Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data." J. Geophys. Res. Atmos., 118 (14): [ /jgrd Sayer, A. M., L. A. Munchak, N.-Y. C. Hsu, et al "MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations." J. Geophys. Res.-Atmos, 119 (24): 13,965-13,989 [ JD022453]