Intelligent Database Systems Lab N.Y.U.S.T. I. M. Psychiatric document retrieval using a discourse-aware model Presenter : Wu, Jia-Hao Authors : Liang-Chih.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology VisualRank- Applying PageRank to Large-Scale Image Search.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Validating Transliteration Hypotheses Using the Web: Web.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Discovering Leaders from Community Actions Presenter : Wu, Jia-Hao Authors : Amit Goyal, Francesco Bonchi,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Quality evaluation of product reviews using an information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An Efficient Concept-Based Mining Model for Enhancing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Text classification based on multi-word with support vector.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On-line Learning of Sequence Data Based on Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 TANGENT: A Novel, “Surprise-me”, Recommendation Algorithm.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Satoshi Oyama Takashi Kokubo Toru lshida 國立雲林科技大學 National Yunlin.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Web usage mining: extracting unexpected periods from web.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Mining Positive and Negative Patterns for Relevance Feature.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction Presenter : Jiang-Shan.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Topology Preservation in Self-Organizing Feature Maps: Exact.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A quantitative stock prediction system based on financial news Presenter : Chun-Jung Shih Authors :Robert.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology SIGIR1 Improving Web Search Results Using Affinity Graph.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Ming Hsiao Author : Bing Liu Yiyuan Xia Philp S. Yu 國立雲林科技大學 National Yunlin University.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A semantic similarity metric combining features and intrinsic information content Presenter: Chun-Ping.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Hybrid Supervised ANN for Classification and Data Visualization.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 AC-ViSOM: Hybridising the Modified Adaptive Coordinate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. How valuable is medical social media data? Content analysis of the medical web Presenter :Tsai Tzung.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Development of a reading material recommendation system based on a knowledge engineering approach Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Word sense disambiguation of WordNet glosses Presenter: Chun-Ping Wu Author: Dan Moldovan, Adrian Novischi.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An Adaptation of the Vector-Space Model for Ontology-Based.
國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing map learning nonlinearly embedded manifoldsmanifolds Author :Timo Simila.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Study on Automatic Recognition of Road Signs Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Yu Cheng Chen Author: YU-SHENG.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Extreme Visualization: Squeezing a Billion Records into a Million Pixels Presenter : Jiang-Shan Wang.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Unsupervised word sense disambiguation for Korean through the acyclic weighted digraph using corpus and.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Regularization in Matrix Relevance Learning Petra Schneider,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Loss of the Mahalanobis Distance in High Dimensions-
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Improving the performance of personal name disambiguation.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Region-based image retrieval using integrated color, shape,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Semantic segment extraction and matching for Internet.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Mining concept maps from news stories for measuring civic scientific literacy in media Presenter :
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Self Organizing Maps and Bit Signature: a study applied.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Modeling Semantic Similarities in Multiple Maps Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Wei Xu,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Providing Justifications in Recommender Systems Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology ACM SIGMOD1 Subsequence Matching on Structured Time Series.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Text Classification Improved through Multigram Models.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Key Blog Distillation: Ranking Aggregates Presenter : Yu-hui Huang Authors :Craig Macdonald, Iadh Ounis.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Text Classification, Business Intelligence, and Interactivity:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Extraction from Wikipedia: Moving Down the Long.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An integrated scheme for feature selection and parameter setting in the support vector machine modeling.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An Integrated Machine Learning Approach to Stroke Prediction Presenter: Tsai Tzung Ruei Authors: Aditya.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Shopbot 2.0-Integrating recommendations and promotions with comparison shopping Presenter : Wu, Jia-Hao.
Presentation transcript:

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Psychiatric document retrieval using a discourse-aware model Presenter : Wu, Jia-Hao Authors : Liang-Chih Yu, Chung-Hsien Wu, Fong-Lin Jang Artificial Intelligence (2009) 國立雲林科技大學 National Yunlin University of Science and Technology

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 2 Outline Motivation Objective Methodology  A Framework of psychiatric document retrieval  Discourse-aware retrieval model Experiments Conclusion Personal Comments

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Motivation Individuals in their daily life may suffer from negative or stressful life events. Some website provide suggestions for individuals.  Browsing and searching all consultation documents to identify the relevant documents is time consuming and tends to become overwhelming. Money Job Argument death

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Objective The paper proposes the use of high-level discourse-aware model.  The model can extract from queries and documents to improve the precision of retrieval results about the psychiatric document retrieval.  Some Retrieval models, such as vector space model and Okapi model, but there only consider the word-level information in queries and documents. Consultation Documents Query Recommendation

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Events +Symptoms +RelationsDiscourse = Cause-effectTemporal-effect

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) Negative life event identification  Find the patterns from the sentences. Pattern induction  Use the seed patterns from psychiatry web corpora using an evolutionary inference algorithm. SVM classification  Use the SVM to train the patterns and transformed into its corresponding feature vector. →,,,

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) Symptom Identification  Word segmentation and Part-Of-Speech (POS) tagging  Semantic dependency graph (SDG) construction.  Semantic label inference. The identification of symptoms is sentence-based. t = (modifier, head, rel modifier,head )

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) P((matters, worry about, goal) | ) is much higher than that in all the other label

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) Relation Identification  Cause-effect relation  Temporal relation

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) Discourse-aware retrieval model Similarity of events and symptoms

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) Similarity of relations The relations are represented by symptom chians.  Use the sequence kernel function to calculate the similarity of two symptom chains.

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.) Sequence kernel function  Symptom 1 : S 1 S 2 S 3 S 4  Symptom 2 : S 3 S 2 S 1  Lengths 2 : {S 1 S 2,S 1 S 3,S 1 S 4,S 2 S 3,S 2 S 4,S 3 S 4 } & {S 3 S 2,S 3 S 1,S 2 S 1 }  Lengths 3 : {S 1 S 2 S 3,S 1 S 2 S 4,S 1 S 3 S 4,S 2 S 3 S 4 } & {S 3 S 2 S 1 }

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology (Cont.)

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments A total of 3650 consultation documents.  20 documents were randomly selected as the test query set.  100 documents were randomly selected as the tuning set.  The remaining 3530 documents were the reference set to be retrieved. Use the discounted cumulative gain to evaluate the retrieval models.  Level 0 : No discourse units are matched.  Level 1 : At least one discourse unit is partially matched.  Level 2 : All of the three discourse units are partially matched.  Level 3 : All of the three discourse units are partially matched, and at last one discourse unit is exactly matched.

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusion The discourse information can provide more precise information about users’ depressive problems. The psychiatric document retrieval can support psychological treatments, so people can learn self-help skills to alleviate their symptoms. The proposed framework can also be applied to other domains.

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Comments Advantage  The proposed content is easy to know, and the authors use some instances to explain their ideas. Drawback  … Application  Psychological document retrieval.  Information Retrieval.