Subgames and Credible Threats (with perfect information) Econ 171.

Slides:



Advertisements
Similar presentations
The Random Dresser Wilbur has – 3 left shoes, all of different colors – 5 right shoes, all of different colors – 4 right gloves, all of different colors.
Advertisements

Bayes-Nash equilibrium with Incomplete Information
The Random Dresser (Clicker Question) Wilbur has – 3 left shoes, all of different colors – 5 right shoes, all of different colors – 4 right gloves, all.
Monte Hall Problem Let’s Draw a Game Tree… Problem 6, chapter 2.
The Unpleasant Professor Problem
Infinitely Repeated Games
Introduction to Game Theory Economics 171. Course requirements Class website Go to economics department home page. Under Links, find Class pages, then.
Pondering more Problems. Enriching the Alice-Bob story Go to AGo to B Go to A Alice Go to B Go to A Go to B Go shoot pool Alice.
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 3.1.Dynamic Games of Complete but Imperfect Information Lecture
Basics on Game Theory Class 2 Microeconomics. Introduction Why, What, What for Why Any human activity has some competition Human activities involve actors,
Game Theory Assignment For all of these games, P1 chooses between the columns, and P2 chooses between the rows.
ECON 100 Tutorial: Week 9 office: LUMS C85.
BASICS OF GAME THEORY. Recap Decision Theory vs. Game Theory Rationality Completeness Transitivity What’s in a game? Players Actions Outcomes Preferences.
Clicker Question-A Chicken Game 0, 0 0, 1 1, 0 -10, -10 Swerve Hang Tough Swerve Hang Tough Player 2 Pllayer 1 Does either player have a dominant strategy?
This Segment: Computational game theory Lecture 1: Game representations, solution concepts and complexity Tuomas Sandholm Computer Science Department Carnegie.
Extensive and Strategic Form Games Econ 171. Reminder: Course requirements Class website Go to economics department home page. Under Links, find Class.
Infinitely Repeated Games. In an infinitely repeated game, the application of subgame perfection is different - after any possible history, the continuation.
Non-Cooperative Game Theory To define a game, you need to know three things: –The set of players –The strategy sets of the players (i.e., the actions they.
Infinitely Repeated Games Econ 171. Finitely Repeated Game Take any game play it, then play it again, for a specified number of times. The game that is.
EC941 - Game Theory Lecture 7 Prof. Francesco Squintani
Problems from Chapter 8. Galileo and the Papal Inquisition.
Short introduction to game theory 1. 2  Decision Theory = Probability theory + Utility Theory (deals with chance) (deals with outcomes)  Fundamental.
1 Deter Entry. 2 Here we see a model of deterring entry by an existing monopoly firm. We will also introduce the notion of a sequential, or dynamic, game.
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 3.1.Dynamic Games of Complete but Imperfect Information Lecture
Taking Turns in the Dark (Subgame perfection with imperfect information) Econ 171.
Chapter 11 Game Theory and the Tools of Strategic Business Analysis.
Repeated Prisoner’s Dilemma If the Prisoner’s Dilemma is repeated, cooperation can come from strategies including: “Grim Trigger” Strategy – one.
Check your (Mis)understanding? Number 3.5 page 79 Answer Key claims that: For player 1 a strictly dominates c For player 2, y strictly dominates w and.
EC102: Class 9 Christina Ammon.
A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes, “You can’t outrun a bear,” scoffs the camper. His.
Intro to Game Theory Revisiting the territory we have covered.
Games with Sequential Moves
Basics on Game Theory For Industrial Economics (According to Shy’s Plan)
Yale Lectures 21 and Repeated Games: Cooperation vs the End Game.
More on Extensive Form Games. Histories and subhistories A terminal history is a listing of every play in a possible course of the game, all the way to.
UNIT II: The Basic Theory Zero-sum Games Nonzero-sum Games Nash Equilibrium: Properties and Problems Bargaining Games Review Midterm3/19 3/12.
Dominant strategies Econ 171. Clicker Question 1, 3 5, 3 2, 4 7, 2 Player 2 Strategy A Strategy B Player 1 Strategy A Strategy B A ) Strategy A strictly.
Nash Equilibrium Econ 171. Suggested Viewing A Student’s Suggestion: Video game theory lecture Open Yale Economics Ben Pollack’s Game Theory Lectures.
Extensive Form Games Econ 171. Reminder: Course requirements Class website Go to economics department home page. Under Links, find Class pages, then click.
Game Theoretic Analysis of Oligopoly lr L R 0000 L R 1 22 The Lane Selection Game Rational Play is indicated by the black arrows.
Exam Questions. Fred and Elmer No Price War Price War.
Problems from Chapter 12. Problem 1, Chapter 12 Find a separating equilibrium Trial-and-error. Two possible separating strategies for Player 1: – Choose.
Dominant strategies. Clicker Question 1, 3 5, 3 2, 4 7, 2 Player 2 Strategy A Strategy B Player 1 Strategy A Strategy B A ) Strategy A strictly dominates.
Extensive Form Games With Perfect Information (Extensions)
Dynamic Games of complete information: Backward Induction and Subgame perfection - Repeated Games -
EC941 - Game Theory Prof. Francesco Squintani Lecture 5 1.
Dynamic Games & The Extensive Form
Game-theoretic analysis tools Tuomas Sandholm Professor Computer Science Department Carnegie Mellon University.
Topic 3 Games in Extensive Form 1. A. Perfect Information Games in Extensive Form. 1 RaiseFold Raise (0,0) (-1,1) Raise (1,-1) (-1,1)(2,-2) 2.
Introduction to Game Theory Economics 171. Course requirements Class website Go to economics department home page. Under Links, find Class pages, then.
Subgames and Credible Threats
Subgames and Credible Threats. Nuclear threat USSR Don’t Invade Hungary 0101 Invade US Give in Bomb USSR
Game Theory (Microeconomic Theory (IV)) Instructor: Yongqin Wang School of Economics, Fudan University December, 2004.
Introduction to Game Theory Economics 171. Course requirements Class website Go to economics department home page. Under Links, find Class pages, then.
Dynamic games, Stackelburg Cournot and Bertrand
Chapter 16 Oligopoly and Game Theory. “Game theory is the study of how people behave in strategic situations. By ‘strategic’ we mean a situation in which.
Subgames and Credible Threats. Russian Tanks Quell Hungarian Revolution of 1956.
Topics to be Discussed Gaming and Strategic Decisions
Pondering more Problems. Enriching the Alice-Bob story Go to AGo to B Go to A Alice Go to B Go to A Go to B Go shoot pool Alice.
Choose one of the numbers below. You will get 1 point if your number is the closest number to 3/4 of the average of the numbers chosen by all class members,
Extensive Form (Dynamic) Games With Perfect Information (Theory)
Lec 23 Chapter 28 Game Theory.
Econ 545, Spring 2016 Industrial Organization Dynamic Games.
Taking Turns in the Dark: (Subgame perfection with incomplete information ) Econ 171.
Entry Deterrence Players Two firms, entrant and incumbent Order of play Entrant decides to enter or stay out. If entrant enters, incumbent decides to fight.
ECO290E: Game Theory Lecture 10 Examples of Dynamic Games.
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 2.1.Dynamic Games of Complete and Perfect Information Lecture
Dynamic Games of complete information: Backward Induction and Subgame perfection.
Somebody’s got to do it. Somebody’s got to do it.
Molly W. Dahl Georgetown University Econ 101 – Spring 2009
Presentation transcript:

Subgames and Credible Threats (with perfect information) Econ 171

Alice and Bob Bob Go to AGo to B Go to A Alice Go to B Go to A Go to B

Strategies For Bob – Go to A – Go to B For Alice – Go to A if Bob goes A and go to A if Bob goes B – Go to A if Bob goes A and go to B if Bob goes B – Go to B if Bob goes A and go to A if Bob goes B – Go to B if Bob goes A and go B if Bob goes B A strategy specifies what you will do at EVERY Information set at which it is your turn.

Strategic Form Go where Bob went. Go to A no matter what Bob did. Go to B no matter what Bob did. Go where Bob did not go. Movie A2,3 0,00,1 Movie B3,21,13,21,0 Alice Bob How many Nash equilibria are there for this game? A)1 B)2 C)3 D)4

The Entry Game Challenger Stay out 0101 Challenge Incumbent Give in Fight 1010

Are both Nash equilibria Plausible? What supports the N.E. in the lower left? Does the incumbent have a credible threat? What would happen in the game starting from the information set where Challenger has challenged?

Entry Game (Strategic Form) -1,-1 0,0 0,1 0,0 Challenge Do not Challenge Challenger Incumbent Give in Fight How many Nash equilibria are there?

Subgames A game of perfect information induces one or more “subgames. ” These are the games that constitute the rest of play from any of the game’s information sets. A subgame perfect Nash equilibrium is a Nash equilibrium in every induced subgame of the original game.

Backwards induction in games of Perfect Information Work back from terminal nodes. Go to final ``decision node’’. Assign action to the player that maximizes his payoff. (Consider the case of no ties here.) Reduce game by trimming tree at this node and making terminal payoffs at this node, the payoffs when the player whose turn it was takes best action. Keep working backwards.

Alice and Bob Bob Go to AGo to B Go to A Alice Go to B Go to A Go to B

Two subgames Bob went ABob went B Alice Go to AGo to B Go to A Go to B

Alice and Bob (backward induction) Bob Go to AGo to B Go to A Alice Go to B Go to A Go to B

Alice and Bob Subgame perfect N.E. Bob Go to AGo to B Go to A Alice Go to B Go to A Go to B

Strategic Form Go where Bob went. Go to A no matter what Bob did. Go to B no matter what Bob did. Go where Bob did not go. Movie A2,3 0,00,1 Movie B3,21,13,21,0 Alice Bob

A Kidnapping Game Kidnapper Don’t Kidnap 3535 Kidnap Relative Pay ransom Kidnapper Don’t pay Kidnapper 4343 KillRelease KillRelease 1414

In the subgame perfect Nash equilibrium A)The victim is kidnapped, no ransom is paid and the victim is killed. B)The victim is kidnapped, ransom is paid and the victim is released. C)The victim is not kidnapped.

Another Kidnapping Game Kidnapper Don’t Kidnap 3535 Kidnap Relative Pay ransom Kidnapper Don’t pay Kidnapper 5353 KillRelease KillRelease 1414

In the subgame perfect Nash equilibrium A)The victim is kidnapped, no ransom is paid and the victim is killed. B)The victim is kidnapped, ransom is paid and the victim is released. C)The victim is not kidnapped.

Does this game have any Nash equilibria that are not subgame perfect? A)Yes, there is at least one such Nash equilibrium in which the victim is not kidnapped. B)No, every Nash equilibrium of this game is subgame perfect.

In the subgame perfect Nash equilibrium A)The victim is kidnapped, no ransom is paid and the victim is killed. B)The victim is kidnapped, ransom is paid and the victim is released. C)The victim is not kidnapped.

Twice Repeated Prisoners’ Dilemma Two players play two rounds of Prisoners’ dilemma. Before second round, each knows what other did on the first round. Payoff is the sum of earnings on the two rounds.

Single round payoffs 10, 10 0, 11 11, 0 1, 1 CooperateDefect Cooperate Defect PLAyER 1 PLAyER 1 Player 2

Two-Stage Prisoners’ Dilemma Player 1 CooperateDefect Player 2 Cooperate Defect Player 1 C C C C C C D DD D C C CD Pl. 2 Pl 2 20 D D C D C D C D D D

Two-Stage Prisoners’ Dilemma Working back Player 1 CooperateDefect Player 2 Cooperate Defect Player 1 C C C C C C D DD D C C CD Pl. 2 Pl 2 20 D D C D C D C D D D

Two-Stage Prisoners’ Dilemma Working back further Player 1 CooperateDefect Player 2 Cooperate Defect Player 1 C C C C C C D DD D C C CD Pl. 2 Pl 2 20 D D C D C D C D D D

Two-Stage Prisoners’ Dilemma Working back further Player 1 CooperateDefect Player 2 Cooperate Defect Player 1 C C C C C C D DD D C C CD Pl. 2 Pl 2 20 D D C D C D C D D D

Longer Game What is the subgame perfect outcome if Prisoners’ dilemma is repeated 100 times? How would you play in such a game?