IEEE Nuclear Science Symposium Roma Oct.2004

Slides:



Advertisements
Similar presentations
H.-G. Moser Max-Planck-Institut für Physik MPI Semiconductor Laboratory (Halbleiterlabor: HLL) Common project of the: Max-Planck-Institut fuer Physik (Werner.
Advertisements

Flex Circuit Design for CCD Application ECEN 5004 Jon Mah.
The ATLAS Pixel Detector
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
Center for Materials and Electronic Technologies
IEEE NSS-MIC 2011, Valencia, Spain 1 Large Area Ultra-Thin Detector Ladders based on CMOS Monolithic Pixel Sensors Wojciech.
General needs at CERN for special PCB’s Philippe Farthouat CERN.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
VELO upgrade electronics – HYBRIDS Tony Smith University of Liverpool.
Status and outlook of the Medipix3 TSV project
Read-out boards Rui de Oliveira 16/02/2009 RD51 WG1 workshop Geneva.
J. Salonen, “Flip Chip Bumping Process at VTT" [presentation for GPG], 16-March-2007 Flip Chip/Bumping Process at VTT Last modified March 16, 2007 By Jaakko.
A multi-chip board for X-ray imaging in build-up technology Alessandro Fornaini, NIKHEF, Amsterdam 4 th International Workshop on Radiation Imaging Detectors.
1/20 Passive components and circuits - CCP Lecture 13.
M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna
March 20, 2001M. Garcia-Sciveres - US ATLAS DOE/NSF Review1 M. Garcia-Sciveres LBNL & Module Assembly & Module Assembly WBS Hybrids Hybrids WBS.
Fabian Hügging – University of Bonn – February WP3: Post processing and 3D Interconnection M. Barbero, L. Gonella, F. Hügging, H. Krüger and.
17/06/2010UK Valencia RAL Petals and Staves Meeting 1 DC-DC for Stave Bus Tapes Roy Wastie Oxford University.
Comparison of various TSV technology
1 Module and stave interconnect Rev. sept. 29/08.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
From hybrids pixels to smart vertex detectors using 3D technologies 3D microelectronics technologies for trackers.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
Phase 2 Tracker R&D Background: Initial work was in the context of the long barrel on local tracklet- based designs. designs of support structures and.
PXL Cable Options LG 1HFT Hardware Meeting 02/11/2010.
Pixel 2000 Workshop Christian Grah University of Wuppertal June 2000, Genova O. Bäsken K.H.Becks.
CERN Rui de OliveiraTS-DEM TS-DEM Development of Electronic Modules Rui de Oliveira CERN State of the art technologies for front-end hybrids.
Foundry Characteristics
Update on Micron productions - Comparison of AC & DC coupled devices - Marko Milovanovic*, Phil Allport, Gianluigi Casse, Sergey Burdin, Paul Dervan, Ilya.
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger,
2 Silicon pixel part Done and to be written Written! Under way To be done Introduction 1.Hybrid Pixel Assembly Concept 2.Silicon sensor 1.First thinned.
CLIC_ILD vertex detector modules and stave Layout Mathieu Benoit 15/03/12 mini workshop on engineering aspects of the CLIC vertex detectors 1.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Communications G. Darbo – INFN / Genova IBL MB#15, 5 October 2009 o Bump Bonding Selex / INFN Roma, October, 30 th 2009 G. Darbo - INFN / Genova.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Low Mass Rui de Oliveira (CERN) July
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
Hybrid circuits and substrate technologies for the CMS tracker upgrade G. Blanchot 04/MAY/2012G. Blanchot - WIT
The Development of the Fabrication Process of Low Mass circuits Rui de Oliveira TS-DEM.
3D sensors for tracking detectors: present and future applications C. Gemme (INFN Genova) Vertex 2013, Lake Starnberg, Germany, September 2013 Outline:
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
Phase 2 Tracker Meeting 6/19/2014 Ron Lipton
Integration of the MVD Demonstrator S. Amar-Youcef, A. Büdenbender, M. Deveaux, D. Doering, J. Heuser, I. Fröhlich, J. Michel, C. Müntz, C. Schrader, S.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
Timepix test-beam results and Sensor Production Status Mathieu Benoit, PH-LCD.
Status report Pillar-1: Technology. The “Helmholtz-Cube” Vertically Integrated Detector Technology Replace standard sensor with: 3D and edgeless sensors,
DEPFET Workhop, Ringberg, June Ladislav Andricek, MPG Halbleiterlabor Lessons learned from EMCMs assembly status - next steps.
Upgrade with Silicon Vertex Tracker Rachid Nouicer Brookhaven National Laboratory (BNL) For the PHENIX Collaboration Stripixel VTX Review October 1, 2008.
PACKAGE FABRICATION TECHNOLOGY Submitted By: Prashant singh.
The medipix3 TSV project
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
PIXEL 2000 P.Netchaeva INFN Genova 0 Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. INFN Genova: R.Beccherle, G.Darbo, G.Gagliardi, C.Gemme,
AC―coupled pitch adapters for silicon strip detectors J. Härkönen 1), E. Tuovinen 1), P. Luukka 1), T. Mäenpää 1), E. Tuovinen 1), E. Tuominen 1), Y. Gotra.
Haga clic para modificar el estilo de texto del patrón Detector modules: Traditional approach and new possibilities Manuel Lozano.
Si Sensors for Additional Tracker
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
P. S. Friedman Integrated Sensors, LLC
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
SVT – SuperB Workshop – SLAC 6-9 Oct 2009
Hybrid Pixel R&D and Interconnect Technologies
ob-fpc: Flexible printed circuits for the alice tracker
Highlights of Atlas Upgrade Week, March 2011
Integration and alignment of ATLAS SCT
Presentation transcript:

IEEE Nuclear Science Symposium Roma Oct.2004 Building Pixel Detector Modules in Multi Chip Module Deposited Technology IEEE Nuclear Science Symposium Roma Oct.2004

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited Originally… …this talk should have been given by my colleague Christian Grah. Here you can see, how he looks like, at least. But if you would have met him during the last years, he probably looked as shown on the right picture! Christian Grah Now at Desy Zeuthen (Berlin, Germany) 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited Subject of this talk Application of a ‘thin’ film technology on a high energy physics detector. Hybrid pixel detector (ATLAS, LHC, CERN) Definition Geometrical constrains Thin film technology Explanation of the process Typical dimensions Introduce some prototypes build, gaining from a strong support of The ATLAS pixel detector project Fraunhofer Institute IZM (Berlin, Germany) Structures realised Results optained Laboratory and test-beam environment Summary (How to…) 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited Hybrid Pixel Detector Three parts: Sensor High quality silicon wafer PiN structure Segmentation into ‘pixels’ Readout Electronics Interconnection Sizes for e.g. ATLAS Pixel: Module 2x6cm² 16 readout chips ~50.000 pixels à 50x400µm 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Interconnect via Kapton-foil FE Sensor Interconnect „ATLAS Flex“ 3D design note control chip and components on top >500 wire-bonds per module Sensor has to cover gaps in electronics 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Interconnect integrated FE Sensor Interconnect „ATLAS MCM-D“ 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

MultiChipModule-Deposited Technology Spin-On BCB (Benzocyclobuthen) Photolithographic structuring/exposure Developing and stripping of unexposed BCB (soft-cure) Sputtering of Cu – plating base layer Spin-On and structuring of Photo-Resist Electroplating of Cu – layer Stripping of Photo-Resist and etching of plating base Spin-On next BCB layer ( h) = a) ) 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

MCM-D wafer after processing 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited MCM-D structures Different scales! 75µm 75µm contact to signal bus system contact to power distribution system 50µm 500µm contact for Probecard (process monitoring) pixel matrix - feedthroughs 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

MCM-D Module Prototype readout chips NTC, capacitors and LVDS termination MCC Kapton flex circuit VBias (backside) 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited MCM-D, geometry conductor layers dielectric layers Up to 5 copper layers: magnetron sputtered up to 300 nm Ti:W/Cu additive electroplating up to 3 mm Cu Minimal width 15µm spacing 15µm Final metallisation: 5mm Cu/200nm Au 5mm Cu/Ni/200nm Au “Spin-on” polymer: BCB (Benzocyclobutene / DOW:CYCLOTENE™) Photosensitive Specific dielectric constant er= 2.7 Process temperatures : 1h 220C per layer last layer 1h 250 C Thickness / layer 2 - 6 mm Via  >22 mm, Pad >25µm 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

MCM-D Module Prototype 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Geometrically Optimized Pixel Sensor conventional sensor layout: (inter-chip region) optimized sensor layout (Equal-sized Bricked): drawn: sensor layout, top metal layer special thx to Tilman Rohe 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Routing structures BCB is etched for visualisation 50µm BCB is etched for visualisation (except of some pillars) 20µm 200µm 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited Equal - Sized - Bricked single chip assembly: distribution of threshold Counts per bin threshold / e- threshold / e- Pixel number No influence of the thin film structures, nor the bricked sensor structure visible 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Equal - Sized - Bricked single chip assembly: distribution of noise Counts per bin ENC / e- Pixel number ENC / e- No influence of the thin film structures, nor the bricked sensor structure visible 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited Testbeam data H8 Testbeam at SPS (CERN) primary: 450 GeV protons Data was mainly taken with: 180 GeV pions Telescope with 4 x 2 layers of strip-detectors (Strip pitch: 50 µm) H8 Telescope system 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Charge collection of equal sized bricked base-cell very uniform with expected behaviour of bias grid contacts 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

Charge collection for single, double and triple hits Slight charge deficit of double hits is due to high threshold (chosen by mistake). This fits to the expected/seen number of triple hits. 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited Summary nice higher manageability and better handling of a module bump bonds only (no wire-bonding) sensor cell geometry can be optimized reduced assembly steps rework of full assembled module possible (detach and reattach of chips) options of final metallization (Cu/CuNi/CuAu/CuNiAu/PbSn) allow different technologies higher degree of automation during production not so nice increased size (but reduced height) lower testability (reduced access to inter-chip signals) high complexity of the process (find vendor) Experience with MCMD successfully operated a radhard pixel detector MCMD module performance compatible with Flex modules Cooling ok (chip up design) successfully increased thin film yield defect tolerant design with reduced "critical" area high demand on cleanliness (includes new machinery and optimization of process flow) 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited

How to build MCMD Modules: Sensor: 1 module per 4” wafer sensor dedicated for MCMD (including dicing streets and 1cm rim) Make use of geometrical optimizations! Electronics: Known good die problem of Multi-Chip Module is relaxed by the reworking option prototyping restrictions: changes in pin-out are expensive (money and time)! thinning: depending on the interconnection technique (reflow) thin chips get bowed during heating up Thin Film Design: defect tolerant design recommended set of design rules has been developed Metal-lines: 15/15um; Via 22um Layer number vs. effort is not linear! Thin Film Processing: automation <=> cleanliness industry keeps increasing wafer size NO PROBLEM for MCM-D, but 4 inch wafer (Sensors) processing might become a problem 20.Oct. 2004 NSS Roma 2004; P.Gerlach (Ch.Grah); Multi Chip Module Deposited