Dye-doped polymer micro-cavity

Slides:



Advertisements
Similar presentations
Introduction in Optics Dipl.Ing.Nicoleta PRICOPI.
Advertisements

Optical near-field control of nanoresonators Near Field Optics Group OMR ICB - Université de Bourgogne Benoit Cluzel, Loïc.
The combination of solid state physics and Maxwell’s equations has resulted in the development of photonic crystals, which offer novel ways of manipulating.
Ashida lab Toyota yusuke
J. P. Reithmaier1,3, S. Höfling1, J. Seufert2, M. Fischer2, J
Nanophotonics Class 6 Microcavities. Optical Microcavities Vahala, Nature 424, 839 (2003) Microcavity characteristics: Quality factor Q, mode volume V.
Resonant gratings for narrow band pass filtering applications
Limits and Interfaces in Sciences / Kumboldt-Kolleg São Paulo-SP,
Anton Samusev JASS’05 30 March – 9 April, 2005 Saint Petersburg State Polytechnical University, Ioffe Physico-Technical Institute Polarization effects.
High Speed Circuits & Systems Laboratory Joungwook Moon
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université.
COMPUTER MODELING OF LASER SYSTEMS
Single Molecule Fluorescence from Organic Dyes in Thin Polymer Films Robin Smith and Carl Grossman, Swarthmore College March 5, 2003.
1 Localized surface plasmon resonance of optically coupled metal particles Takumi Sannomiya*, Christian Hafner**, Janos Vörös* * Laboratory of Biosensors.
Whiteboard Warmup! A glass lens of refractive index n = 1.6 has a focal length of 30 cm while in air. What would happen to the focal length of the lens.
Exam II Review. Review of traveling wave interference Phase changes due to: Optical path length differences sources out of phase General solution.
Surface-waves generated by nanoslits Philippe Lalanne Jean Paul Hugonin Jean Claude Rodier INSTITUT d'OPTIQUE, Palaiseau - France Acknowledgements : Lionel.
Chris Chase EE235 4/9/07. Chris Chase, EE235 2 Introduction Nanowire Lasers Applications Potential solution for a laser integrated on silicon Nanowires.
1 R. Bachelot H. Ibn-El-Ahrach 1, O. Soppera 2, A. Vial 1,A.-S. Grimault 1, G. Lérondel 1, J. Plain 1 and P. Royer 1 R. Bachelot, H. Ibn-El-Ahrach 1, O.
May be regarded as a form of electromagnetic radiation, consisting of interdependent, mutually perpendicular transverse oscillations of an electric and.
Near-field thermal radiation
Theoretical investigations on Optical Metamaterials Jianji Yang Supervisor : Christophe Sauvan Nanophotonics and Electromagnetism Group Laboratoire Charles.
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Interference Diffraction and Lasers
Chapter 5: Wave Optics How to explain the effects due to interference, diffraction, and polarization of light? How do lasers work?
Ashida lab M1 toyota M. Cai, O.Painter, K. J. Vahala, Opt. Lett. 25, 1430 (2000). Fiber-coupled microsphere laser.
Optical Components Ajmal Muhammad, Robert Forchheimer
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
Theory of Intersubband Antipolaritons Mauro F
Quantum Physics Study Questions PHYS 252 Dr. Varriano.
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
PROPERTIES OF LASER BEAMS  Laser beam is generated in a specific wave length by the interaction of electromagnetic wave with the active medium.  To represent.
Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac,
1 um We seek to understand the electrical and optical properties of single organic semiconducting molecules contacted on either end by metal electrodes.
Surface Plasmon Resonance
1 Electromagnetic waves Hecht, Chapter 2 Wednesday October 23, 2002.
Min Hyeong KIM High-Speed Circuits and Systems Laboratory E.E. Engineering at YONSEI UNIVERITY
The Wave Nature of Light
Electromagnetic waves: Reflection, Refraction and Interference
Quantification of Chromatic Aberration In the Laser-Heated Diamond Anvil Cell Emily England, Wes Clary, Daniel Reaman, Wendy Panero School of Earth Sciences,
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Numerical Simulations of Laser-Tissue Interactions Shannon M. Mandel Sophomore Intense Laser Physics Theory Unit Illinois State University Supervisor.
L 32 Light and Optics-4 Up to now we have been studying geometric optics Today we will look at effects related to the wave nature of light – physical optics.
Introduction to materials physics #4
Finite Element Method for General Three-Dimensional
Nonlinear Optical Response of Nanocavities in Thin Metal Films Yehiam Prior Department of Chemical Physics Weizmann Institute of Science With Adi Salomon.
29:006 FINAL EXAM FRIDAY MAY 11 3:00 – 5:00 PM IN LR1 VAN.
Wave Behavior.  The change in direction of a wave when it strikes a boundary.  Diagrams from page 292 in journal. Draw them exactly as you see them.
Bouncing Beams and Sticky Glass EM Wave Phenomenon.
Wave Properties. S8P4. Students will explore the wave nature of sound and electromagnetic radiation. d. Describe how the behavior of waves is affected.
Topic I: Quantum theory Chapter 7 Introduction to Quantum Theory.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. Working principle of the immersion schemes: (a) focusing in air, (b) focusing through.
Narrow-band filtering with resonant gratings under oblique incidence Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille,
Light and Optics  The Electromagnetic Spectrum  Interference, Diffraction, and Polarization Wave Properties of Light.
Numerical Simulations of Laser-Tissue Interactions
J.Kalkman, A.Tchebotareva, A.Polman, T.J.Kippenberg,
FDTD Modeling of FID Signal in Chirped-Pulse Millimeter Wave Spectroscopy Alexander Heifetz1, Sasan Bakhtiari1, Hual-Teh Chien1, Stephen Gray1, Kirill.
18.2 Interference, Diffraction, and Polarization
Light-Matter Interaction
Properties of Laser There are Severel Properties Of LASER which are defined as follows:- MONOCHROMATICITY COHERENCE DIRECTIONALITY BRIGHTNESS DIVERGENCE.
Orbital angular momentum microlaser
Bell Ringer T/F: An electromagnetic wave requires a medium.
Behavior of Light.
Scalar theory of diffraction
Kenji Kamide* and Tetsuo Ogawa
PLASMONICS AND ITS APPLICATIONS BY RENJITH MATHEW ROY. From classical fountations to its modern applications
Presentation transcript:

a 3-D investigation of 2-D organic micro-billiard lasers Light from the edge: a 3-D investigation of 2-D organic micro-billiard lasers Clément Lafargue1, S. Lozenko1 , S. Bittner1, C. Ulysse2, C. Cluzel3, J. Zyss1, M. Lebental1 1 – Laboratoire de Photonique Quantique et Moléculaire, ENS de Cachan. 2 – Laboratoire de Photonique et de Nanostructures , CNRS, Marcoussis. 3 – Laboratoire de mécanique et technologie, ENS de Cachan. 25’’ Joke billiard Molecular quantum photonics lab

Dye-doped polymer micro-cavity Organic microlasers Conventional laser Dye-doped polymer micro-cavity Amplifying medium + Resonating Cavity Usual configuration weak confinement n ≈ 1.5 40’’ Low index = weak confinement, desirable effect Deep reasons : selection of few orbits, WGM: Microsphères et microtores de Silice, Cavity quantum electrodynamics group

LPQM – microlaser group topics Chaotic cavities POSTER, I. Gozhyk : Towards the control of polarization properties of solid state organic lasers I. Gozhyk, PRA 86, 043817 (2012) Lebental, APL 88, 031108 (2006) Unidirectional lasing N.Djellali, APL 95, 101108 (2009) Emission Diffraction Measurement and model POSTER, S. Bittner : Localization of modes in a dielectric square resonator Semi-classical modeling S.Lozenko “Microfluid” EU Project Analyte solution flow Numerical modeling 90’’ Interessé/ intrigué par les directions d’émission , on a s’est retrouvé confronté au problème du coin diélectrique. Mécanisme de sortie -> joue aussi sur la compétition en tre modes vu que pertes=gain De plus on s’est dit qu’on pouvait peut-être apporter qqchose grâce à nos machins sur le prb même du coin diélectrique

Motivation: diffraction at dielectric corners and edges no solution Metallic corner Sommerfeld 1896 30’’ Steady-state Fil rouge diffraction : expliquer les similitudes et différences des différents cas (diff du FP, dif du carré , diff du triangle-diffractiv orbit) A standing wave in a resonator to explore the corner

Outline Background on organic microlasers Fabrication Experiment Emission/diffraction properties Fabry-Pérot like cavities Square cavities Triangular microlasers 20’’ 4

Outline Background on organic microlasers Fabrication Experiment Emission /diffraction properties Fabry-Pérot like cavities Square cavities Triangular microlasers 5’’ 5 5

Organic microlaser: Fabrication Cavity n≈1.5 PMMA + Dye SiO2 n=1.45 n2=1 0.6-0.7 μm Fabrication: Electron-beam lithography 50-200 µm Microscope photograph SEM photograph 1μm 0.6 µm 50-200 µm Arbitrary cavity shapes Different laser dyes 40’’ 6 6

Organic microlasers: characterization Excitation geometry Lasing thresholds pumping 532 nm Emission diagrams ~610 nm emission collecting lens Spectrometer Spectrum L 40’’ Pulsed pumping Typical spectrum Images Wavelength [nm] 7

Organic microlasers: characterization Experimental Measurements Lasing thresholds Emission diagrams Spectrum L 20’’ Images

Organic microlasers: characterization Experimental Measurements Lasing thresholds FAR FIELD DETECTION Emission diagrams Spectrum L 20’’ Dire ‘square’, ‘stadium’ ‘sharp lobes’ Images Physical Review A 75, 033806 (2007)

Semi-classical approach Organic microlasers: characterization Experimental Measurements Lasing thresholds F.S.R. Emission diagrams Semi-classical approach Spectrum L 20’’ FSR linked to the length of PO Expliquer differentes PO Images Periodic Orbits PRA 76, 023830 (2007)

Organic microlasers: characterization Experimental Measurements Lasing thresholds Emission diagrams Spectrum L 20’’ Images

Outline Background on organic microlasers Fabrication Experiment Emission/diffraction properties Fabry-Pérot like cavities Square cavities Triangular microlasers 10’’ 12 12

3D emission- latitude diagrams FP Measurement: 50’’ Emission UPLIFTED 13

3D emission- latitude diagrams FP Sergey Lozenko J.A.P. 111, 103116 (2012) z Measurement: x 50’’ Thin Angular lobes Free-standing 14

3D emission - latitude diagrams FP Model: Slit diffraction   Interference (wafer) 50’’ Remind that it is a FP Enlight the differences C. Lafargue, to be submitted 15

Outline Background on organic microlasers Fabrication Experiment Emission/diffraction properties Fabry-Pérot like cavities Square cavities Triangular microlasers 20’’ 16 16

Square microlaser : diffractive outcoupling Diamond orbit confined by total internal reflection … nL = n x 2√2 a 50’’

Square microlaser : diffractive outcoupling Diamond orbit confined by total internal reflection … … but losses occur via diffraction 30’’ 18

Square microlaser : diffractive outcoupling Pump : 30’’ + example pola effect Camera Pump polarization effects I. Gozhyk, PRA 86, 043817 (2012),

Square microlaser : diffractive outcoupling The diffraction at the corners here is not at all understood, but it would be important to do so the latitude diagrams depend strongly on the kind of mode inside the resonator -> maybe there is some kind of connection between the diffraction in the two different directions.

Outline Background on organic microlasers Fabrication Experiment Emission/diffraction properties Fabry-Pérot like cavities Square cavities Triangular microlasers 20’’ 21 21

Periodic Orbits in triangles A not so simple shape (not regular contour) No totally confined periodic orbits An open mathematical question:  «  Does a periodic orbit in a triangle exist ? » Alain Grigis, University Paris XIII ?

FP winning 100° 40°

FP not always winning Camera view 110° 35° 35° 110° Despite the fact FP is in family, the other isolated orbit is winning

Diffractive orbit 98.04° 40° 41.96° « DO not exist in classical mechanics »

Summary Diffraction effects from the edges on different contours : 3D Fabry-Pérot emission well understood Square : emission at the corners 3D emission depends on the cavity shape Triangles Identification of orbits Switching between different types of orbits Observation of a diffractive orbit

Perspectives 5’’ clement.lafargue@ens-cachan.fr

110° 110° 700

phi= 60° phi= -22° Incidence 0° Incidence 40°

Does a periodic orbit in a triangle exist ? Alain Grigis, University Paris XIII Acute triangles feet of the altitudes Less than 100° triangles: Journal of Experimental Mathematics, 18, p. 137 (2008) Rational triangles : angles = pp/m , unfolding theory Others … 31

Information in the laser spectrum : Length L of the periodic orbit Semi-Classical point of view Information in the laser spectrum : Length L of the periodic orbit Lasing L n1 n2 32 32

Periodic orbits & trace formula Density of states Wave physics Semi-classical limit Classical physics PRE 83, 036208 (2011) Sum on periodic orbits Length of the orbits Fresnel reflexion coefficients Coeff depending only on classical quantities

Effective index approximation Electromagnetism z Passive cavity (no laser) : resonances w ? Boundary conditions Outside Inside (Dxy + neff ² k²) z Effective index approximation 34

From electromagnetism to wave chaos 2D problem Boundary conditions diffraction 35

Resonance computation Square: not integrable Diamond -1.2 100 Charles Schmit, Eugène Bogomolny Phys. Rev. E 83, 036208 (2011) 36

How to fabricate ? What are the emission directions ?

3D – Polarization selection q q Pump polarization Camera 38

3D – Polarization selection Pump polarization : (Camera) 39