Present / introduce / motivate After Introduction to the topic

Slides:



Advertisements
Similar presentations
Fast Adaptive Hybrid Mesh Generation Based on Quad-tree Decomposition
Advertisements

Steady-state heat conduction on triangulated planar domain May, 2002
Sven Woop Computer Graphics Lab Saarland University
Multidisciplinary Computation and Numerical Simulation V. Selmin.
An estimate of post-seismic gravity change caused by the 1960 Chile earthquake and comparison with GRACE gravity fields Y. Tanaka 1, 2, V. Klemann 2, K.
EAGE Dubai 12/11/ Interpretation of hydrocarbon microtremors as pore fluid oscillations driven by ambient seismic noise Marcel.
LOCALIZATION OF SEDIMENTARY ROCKS DURING DUCTILE FOLDING PROCESSES Pablo F. Sanz and Ronaldo I. Borja Department of Civil and Environmental Engineering.
16/9/2011UCERF3 / EQ Simulators Workshop Terry Tullis Steve Ward John RundleJim Dieterich Keith Richards-Dinger Fred Pollitz Generic Description of Earthquake.
CIG Meeting, computational seismology, SPICE Seismic wave Propagation and Imaging in Complex media: a European network Marco Stupazzini,
Numerical methods in the Earth Sciences: seismic wave propagation Heiner Igel, LMU Munich III The latest developments, outlook Grenoble Valley Benchmark.
SPICE workshop Venice 2004 SPICE Seismic wave Propagation and Imaging in Complex media: a European network Welcome to Venice! First Research and Training.
Session: Computational Wave Propagation: Basic Theory Igel H., Fichtner A., Käser M., Virieux J., Seriani G., Capdeville Y., Moczo P.  The finite-difference.
Cardiac Simulations with Sharp Boundaries Preliminary Report Shuai Xue, Hyunkyung Lim, James Glimm Stony Brook University.
1cs542g-term Notes  Make-up lecture tomorrow 1-2, room 204.
SPICE Research and Training Workshop III, July 22-28, Kinsale, Ireland Seismic wave Propagation and Imaging in Complex media: a European.
Earthquake dynamics at the crossroads between seismology, mechanics and geometry Raúl Madariaga, Mokhtar Adda-Bedia ENS Paris, Jean-Paul Ampuero, ETH Zürich,
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
A nearfield Tsunami warning system in Taiwan by unit tsunami method Po-Fei Chen 1, Yun-Ru Chen 2, Bor-Yaw Lin 1,3, Wu-Ting Tsai 2 1. Institute of Geophysics,
Chamber Dynamic Response Modeling Zoran Dragojlovic.
Advancing Computational Science Research for Accelerator Design and Optimization Accelerator Science and Technology - SLAC, LBNL, LLNL, SNL, UT Austin,
11/02/2007PEER-SCEC Simulation Workshop1 NUMERICAL GROUND MOTION SIMULATIONS: ASSUMPTIONS, VERIFICATION AND VALIDATION Earthquake Source Velocity Structure.
Jeroen Tromp Computational Seismology. Governing Equations Equation of motion: Boundary condition: Initial conditions: Earthquake source: Constitutive.
Surface wave tomography: part3: waveform inversion, adjoint tomography
SPICE Research and Training Workshop III, July 22-28, Kinsale, Ireland Seismic wave Propagation and Imaging in Complex media: a European.
A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.
Surface wave tomography : 1. dispersion or phase based approaches (part A) Huajian Yao USTC April 19, 2013.
Abstract : The quest for more efficient and accurate computational electromagnetics (CEM) techniques has been vital in the design of modern engineering.
SCD User Forum 2005 Dynamically adaptive geophysical fluid dynamics simulation using GASpAR: Geophysics/Astrophysics Spectral-element Adaptive Refinement.
LBNLGXTBR FY2001 Oil and Gas Recovery Technology Review Meeting Diagnostic and Imaging High Speed 3D Hybrid Elastic Seismic Modeling Lawrence Berkeley.
35 1 Introduction Since 2004, the EU funded Marie Curie Training Network "Seismic wave propagation and imaging in complex media: a European network" joins.
SPICE Research and Training Workshop III, July 22-28, Kinsale, Ireland presentation Seismic wave Propagation and Imaging in Complex media:
Spectral-element solution of the
Variational method for construction of block-structured grids and thick prismatic mesh layers, V.A. Garanzha 1,2, L.N. Kudryavtseva 1,2 1 Computing Center.
Adaptive Mesh Modification in Parallel Framework Application of parFUM Sandhya Mangala (MIE) Prof. Philippe H. Geubelle (AE) University of Illinois, Urbana-Champaign.
Efficient Integration of Large Stiff Systems of ODEs Using Exponential Integrators M. Tokman, M. Tokman, University of California, Merced 2 hrs 1.5 hrs.
M. Stupazzini, C. Zambelli, L. Massidda, L. Scandella M. Stupazzini, C. Zambelli, L. Massidda, L. Scandella R. Paolucci, F. Maggio, C. di Prisco THE SPECTRAL.
Discontinuous Galerkin Methods Li, Yang FerienAkademie 2008.
Materials Process Design and Control Laboratory Finite Element Modeling of the Deformation of 3D Polycrystals Including the Effect of Grain Size Wei Li.
Disputable non-DC components of several strong earthquakes Petra Adamová Jan Šílený.
SPICE Research and Training Workshop III, July 22-28, Kinsale, Ireland Seismic wave Propagation and Imaging in Complex media: a European.
1 1 What does Performance Across the Software Stack mean?  High level view: Providing performance for physics simulations meaningful to applications 
Stress constrained optimization using X-FEM and Level Set Description
3D Seismic Imaging based on Spectral-element Simulations and Adjoint Methods Qinya Liu Department of Physics University of Toronto 1 st QUEST Workshop,
MHD Dynamo Simulation by GeoFEM Hiroaki Matsui Research Organization for Informatuion Science & Technology(RIST), JAPAN 3rd ACES Workshop May, 5, 2002.
Parallel Solution of the Poisson Problem Using MPI
Adaptive Meshing Control to Improve Petascale Compass Simulations Xiao-Juan Luo and Mark S Shephard Scientific Computation Research Center (SCOREC) Interoperable.
LLNL-PRES DRAFT This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract.
Cracow Grid Workshop, November 5-6, 2001 Concepts for implementing adaptive finite element codes for grid computing Krzysztof Banaś, Joanna Płażek Cracow.
Multiples Waveform Inversion
1 IV European Conference of Computational Mechanics Hrvoje Gotovac, Veljko Srzić, Tonći Radelja, Vedrana Kozulić Hrvoje Gotovac, Veljko Srzić, Tonći Radelja,
Mengyu Wang1, Christian Engström1,2,
SPICE Research and Training Workshop III, July 22-28, Kinsale, Ireland Overlapping Multidomain Chebyshev Method: Verification.
1 Rocket Science using Charm++ at CSAR Orion Sky Lawlor 2003/10/21.
© Ram Ramanan 2/22/2016 Commercial Codes 1 ME 7337 Notes Computational Fluid Dynamics for Engineers Lecture 4: Commercial Codes.
Wave-Equation Waveform Inversion for Crosswell Data M. Zhou and Yue Wang Geology and Geophysics Department University of Utah.
A Fully Conservative 2D Model over Evolving Geometries Ricardo Canelas Master degree student IST Teton Dam 1976.
Numerical simulations of wave/particle interactions in inhomogeneous auroral plasmas Vincent Génot (IRAP/UPS/CNRS, Toulouse) F. Mottez (LUTH/CNRS, Meudon)
J. Diaz, D. Kolukhin, V. Lisitsa, V. Tcheverda Coupling of the Discontinuous Galerkin and Finite Difference techniques to simulate seismic waves in the.
SPICE Research and Training Workshop III, July 22-28, Kinsale, Ireland Seismic wave Propagation and Imaging in Complex media: a European.
Hybrid Parallel Implementation of The DG Method Advanced Computing Department/ CAAM 03/03/2016 N. Chaabane, B. Riviere, H. Calandra, M. Sekachev, S. Hamlaoui.
What is SeisFlows? -Provides a complete, customizable waveform inversion workflow -So far, has been used for 3D production runs with up to 10 9 model parameters.
Mid-Term Review Meeting, February 13-14, Tutzing Task group: Planetary scale Members from: LMU Munich IPG Paris INGV Bologna University.
Unstructured Meshing Tools for Fusion Plasma Simulations
error-driven local adaptivity in elasto-dynamics
Programming Models for SimMillennium
Adaptive Grid Generation for Magnetically Confined Plasmas
Douglas Dreger, Gabriel Hurtado, and Anil Chopra
King Abdullah University of Science and Technology
Comparison of CFEM and DG methods
Low Order Methods for Simulation of Turbulence in Complex Geometries
Presentation transcript:

Global/regional wave propagation through complex 3D heterogeneous Earth models Present / introduce / motivate After Introduction to the topic Answer the question why DG Differences to the elaborated spectral element method In detail stress the difference of approximation of material values between the methods Give conclusion and outlook

Outline 1. Why do we develop global simulation tools? 2. Why do we use the Discontinuous-Galerkin method? 3. What are the experiences in applying the method? 4. How do we have to focus the developments? At first a quick overview on my presentation outline. After the motivation of the project i will answer the question why we are using DG. So I will explain why and for which applications the dg method is useful. And afterwards I will show some preliminary results on the application of the method to global scale simulations. Finally i will conclude the important facts of my talk and give an outlook on the further development of the project. 14.10.2011

Motivation Imaging the Earth/Study Earthquake physics Computational power increases exponentially Inversion of full waveforms Numerical simulations for 3D heterogeneous Earth models Focus on Finite-Element methods High order accurate and fast enough Different implementations for different applications There is no all in one algorithm SEM – “faster but simple models” DG – “slower but complex models” Many other… Wir wollen etwas über dynamische Eigenschaften der Erde rausfinden Nutzen von allen Bereichen der Geowissenschaften: Geophysik, Geodynamik, Geologie, Geochemie, Mineralogie Daraus werden theoretische Erdmodelle abgeleitet für alle möglichen Parameter wie Temperatur, Druck, Viskosität In Seismologie sind wir an elastodynamischen Parametern interessiert die wir von Beobachtungen ableiten können. Diese Paramter bestimmen wie sich eine mechanische Welle in der Erde ausbreitet. Ändern wir also die Parameter verändern wir das Verhalten der Wellenausbreitung. Das führt zu Veränderungen in der Ankunftszeit von bestimmten Phasen oder zur Veränderung der Form der Welle. Zu überprüfung der Modelle nutzen wir sogenannte Vorwärtsberechnungen die z.B. analytisch ausgeführt werden. D.h. wir nehmen eine mathematische Rechenvorschrift für die Berechnung der Wellenausbreitung stecken das Erdmodell rein und erzeugen so synthetische Seismogramme. Die systematische Veränderung des reingesteckten Modells kann dann Effekte der Wellenausbreitung aufzeigen. Wenn die Modelle 3D und heterogen sind genügen analytische Ansätze nicht mehr und wir müssen kompliziertere numerische Ansätze heran ziehen. Das Ergebnis sieht man im unteren Beispiel. Die durchgezogene Kurve sind die Daten eines Erdbebens und die gestrichelte Kurve ist das synthetische Ergebnis. Die Hauptmerkmale passen. Motivation Why DG? Experiences Focus 14.10.2011 3

Project aim Adaptation of the new Discontinuous-Galerkin method to global/regional wave propagation Code development Benchmarking with elaborated numerical methods High quality mesh generation Application to models of complex geometries and strong material gradients Main focus of the project is the technical improvement and verification of the code To develop a modeling tool for the simulations of complex 3D earth models Systematic code development is only possible with comparison to elaborated numerical methods. Another crucial point beneath the code development is the question how we can generate high quality meshes . The DG method uses unstructured tetrahedral grids which offer high flexibility in the mesh generation process. But it is still not straightforward to mesh small scale structures easily. requirements Unstructured tetrahedral grid, PREM model Motivation Why DG? Experiences Focus 14.10.2011 4

Outline 1. Why do we develop global simulation tools? 2. Why do we use the Discontinuous-Galerkin method? 3. What are the experiences in applying the method? 4. How do we have to focus the developments? At first a quick overview on my presentation outline. After the motivation of the project i will answer the question why we are using DG. So I will explain why and for which applications the dg method is useful. And afterwards I will show some preliminary results on the application of the method to global scale simulations. Finally i will conclude the important facts of my talk and give an outlook on the further development of the project. 14.10.2011

FEM tools Spectral-Element method Why another algorithm? High order method with spectral convergence Structured hexahedral grid Why another algorithm? Ratio of element size: hmin/hmax <<1 SEM: global time step -> simulation “explodes” Discontinuous-Galerkin method Easy mesh refinement Local system → easier to parallelize SeisSol features: time integration as good as spatial approximation, local time stepping, local polynomial degree Structured hexahedral grid (Komatitsch et al. (2002) Determined defined given specified DG ist auch viel flexibler was komplexe Gitter angeht. Heterogene Modelle und starke Geschwindigkeitsänderungen von einer Größenordnung können mit Hexaedern nicht ohne weiteres berücksichtigt werden. Übergang an Grenzschichten ist schwierig da neue Elemente eingefügt werden müssen. Statisch festlegen wo vergrößerung des gitters in bezug auf geschwindigkeit nötig ist. Momentan gibt es diese Modelle noch nicht, aber bald. Exaflop bald. The discontinuous Galerkin method uses sophisticated triangulation methods for tetrahedra but this causes higher computational costs. The crucial advantage is the effective and accurate grid generting process and its robustness when meshing any general shape. In addition because of the arbitrarily high approximation order numerical dispersion effects are minimized. Vorstellung dass es automatischen Gittererzeuger gibt, der Gridspacing an Modell anpasst. Versagen von SpecFEM Diplomarbeit Matthias Meschede!!! Jacobian wird zu klein! SEM – spektrale Konvergenz, Konvergenzordnung des Fehlers wenn Gitter kleiner wird. Inversion einer vollbesetzten globalen Massenmatrix ist furchtbar. Stärke von SpecFEM ist diagonale Massenmatrix mit CubedSphere. Unstructured tetrahedral grid, PREM with refined Kernel Motivation Why DG? Experiences Focus 21.06.2011 6

Outline 1. Why do we develop global simulation tools? 2. Why do we use the Discontinuous-Galerkin method? 3. What are the experiences in applying the method? 4. How do we have to focus the developments? At first a quick overview on my presentation outline. After the motivation of the project i will answer the question why we are using DG. So I will explain why and for which applications the dg method is useful. And afterwards I will show some preliminary results on the application of the method to global scale simulations. Finally i will conclude the important facts of my talk and give an outlook on the further development of the project. 21.06.2011

Explosive source PREM no crust PREM with crust High frequency simulation only on a regional scale Problem: Boundary reflections Motivation Why DG? Experiences Focus 14.10.2011

Raw Mineos data look like this! Realistic source CMT: Norwegian Sea (M=6.0, 20.08.2009) Lat/Lon/Depth = 72.2°/0.84°/12km dip ≈ 30°, oblique slip Raw Mineos data look like this! Any suggestions? Motivation Why DG? Experiences Focus 14.10.2011

Attenuation 1D iso PREM + explosive source + attenuation Comparison of Mineos and SpecFEM Difference in relaxation mechanisms or attn. model? Motivation Why DG? Experiences Focus 14.10.2011

1. Why do we develop global simulation tools? Outline 1. Why do we develop global simulation tools? 2. Why do we use the Discontinuous-Galerkin method? 3. What are the experiences in applying the method? 4. How do we have to focus the developments? At first a quick overview on my presentation outline. After the motivation of the project i will answer the question why we are using DG. So I will explain why and for which applications the dg method is useful. And afterwards I will show some preliminary results on the application of the method to global scale simulations. Finally i will conclude the important facts of my talk and give an outlook on the further development of the project. 14.10.2011

Conclusions Benchmarking up to intermediate frequency and simple 1D isotropic Earth model works Modeling Tasks: 1D-Model: Investigate differences for real source and visco-elastic modeling results 3D-Model: real source + attenuation (+ anisotropy) Application: Cascadia, Europe… Quest benchmark library Code development: Perfectly Matched Layers Load balancing using space filling curves Streamline routines Motivation Why DG? Experiences Focus 14.10.2011