3-1 Chapter 3 Time Value of Money © 2001 Prentice-Hall, Inc. Fundamentals of Financial Management, 11/e Created by: Gregory A. Kuhlemeyer, Ph.D. Carroll.

Slides:



Advertisements
Similar presentations
3-1 Time Value of Money. 3-2 After studying, you should be able to: 1. Understand what is meant by "the time value of money." 2. Understand the relationship.
Advertisements

4-1 Business Finance (MGT 232) Lecture Time Value of Money.
Discounted Cash Flow Valuation
Chapter 4,5 Time Value of Money.
The Time Value of Money Compounding and Discounting Single Sums and Annuities  1999, Prentice Hall, Inc.
Discounted Cash Flow Valuation
Principles of Managerial Finance 9th Edition
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Discounted Cash Flow Valuation (Formulas) Chapter Six.
4-1 Business Finance (MGT 232) Lecture Time Value of Money.
TIME VALUE OF MONEY Chapter 5. The Role of Time Value in Finance Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-2 Most financial decisions.
Lecture Four Time Value of Money and Its Applications.
3.1 Van Horne and Wachowicz, Fundamentals of Financial Management, 13th edition. © Pearson Education Limited Created by Gregory Kuhlemeyer. Chapter.
Multiple Cash Flows –Future Value Example 6.1
Mathematics of Finance Solutions to the examples in this presentation are based on using a Texas Instruments BAII Plus Financial calculator.
Principles of Corporate Finance Session 10 Unit II: Time Value of Money.
Time Value of Money Many financial decisions require comparisons of cash payments at different dates Example: 2 investments that require an initial investment.
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 6 Discounted Cash Flow Valuation.
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 6 Discounted Cash Flow Valuation.
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 6 Discounted Cash Flow Valuation.
5.0 Chapter 5 Discounte d Cash Flow Valuation. 5.1 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute.
Multiple Cash Flows –Future Value Example
TIME VALUE OF MONEY CHAPTER 5.
0 Chapter 6 Discounted Cash Flow Valuation 1 Chapter Outline Future and Present Values of Multiple Cash Flows Valuing Level Cash Flows: Annuities and.
6-1 July 14 Outline Multiple Cash Flows: Future and Present Values Multiple Equal Cash Flows: Annuities and Perpetuities.
Bennie Waller – Longwood University Personal Finance Bennie Waller Longwood University 201 High Street Farmville, VA.
Chapter 6 Calculators Calculators Discounted Cash Flow Valuation McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
1 Chapter 5 Discounted Cash Flow Valuation. 2 Overview Important Definitions Finding Future Value of an Ordinary Annuity Finding Future Value of Uneven.
Chapter 3 The Time Value of Money
Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. Understand the concept.
3-1 Chapter 3 Time Value of Money © Pearson Education Limited 2004 Fundamentals of Financial Management, 12/e Created by: Gregory A. Kuhlemeyer, Ph.D.
Chapter 4 Time Value of Money. Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-2 Learning Goals 1.Discuss the role of time value in finance,
Chapter 5 The Time Value of Money
Time Value of Money.
Time Value of Money 2: Analyzing Annuity Cash Flows
TIME VALUE OF MONEY. WHY TIME VALUE A rupee today is more valuable than a rupee a year hence. Why ? Preference for current consumption over future consumption.
Summary of Previous Lecture Corporation's taxable income and corporate tax rate - both average and marginal. Different methods of depreciation. (Straight.
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Chapter 4 Time Value of Money.
August, 2000UT Department of Finance The Time Value of Money 4 What is the “Time Value of Money”? 4 Compound Interest 4 Future Value 4 Present Value 4.
McGraw-Hill/Irwin ©2001 The McGraw-Hill Companies All Rights Reserved 5.0 Chapter 5 Discounte d Cash Flow Valuation.
3b.1 Van Horne and Wachowicz, Fundamentals of Financial Management, 13th edition. © Pearson Education Limited Created by Gregory Kuhlemeyer. Chapter.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Quick Quiz – Part 1 Suppose you are looking at the following possible cash flows: Year 1 CF = $100; Years 2 and 3 CFs = $200; Years 4 and 5 CFs = $300.
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Ch 4, Time Value of Money, Learning Goals 1.Concept of time value of money (TVOM). 2.Calculate for a.
© 2004 by Nelson, a division of Thomson Canada Limited Contemporary Financial Management Chapter 4: Time Value of Money.
4-1 Business Finance (MGT 232) Lecture Time Value of Money.
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Discounted Cash Flow Valuation Chapter 5.
Accounting and the Time Value of Money
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Discounted Cash Flow Valuation Chapter Six.
Chapter # 2.  A dollar received today is worth more than a dollar received tomorrow › This is because a dollar received today can be invested to earn.
3-1 Chapter 3 Time Value of Money. 3-2 After studying Chapter 3, you should be able to: 1. Understand what is meant by "the time value of money." 2. Understand.
3-1 Chapter 3 Time Value of Money © Pearson Education Limited 2004 Fundamentals of Financial Management, 12/e Created by: Gregory A. Kuhlemeyer, Ph.D.
Besley Ch. 61 Time Value of Money. Besley Ch. 62 Cash Flow Time Lines CF Time Lines are a graphical representation of cash flows associated with a particular.
The Time Value of Money Schweser CFA Level 1 Book 1 – Reading #5 master time value of money mechanics and crunch the numbers.
Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 0 Chapter 5 Introduction to Valuation: The Time Value of Money.
Financial Management [FIN501] Suman Paul Suman Paul Chowdhury Suman Paul Suman Paul Chowdhury
Time Value of Money Chapter 5  Future Value  Present Value  Annuities  Rates of Return  Amortization.
Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-1 Ch 4, TVOM, Learning Goals Concept of time value of money (TVOM). Calculate for a single.
Annuities © Pearson Education Limited 2004
Time Value of Money.
ERT 461: BIOSYSTEMS ENGINEERING DESIGN 1
Chapter 3 The Time Value of Money.
The Time Value of Money Miss Faith Moono Simwami
What would you rather have?
Chapter 3.3 Time Value of Money.
Chapter 3 Time Value of Money © Pearson Education Limited 2004
Chapter 3 - Support The Time Value of Money.
Introduction to Valuation: The Time Value of Money
Presentation transcript:

3-1 Chapter 3 Time Value of Money © 2001 Prentice-Hall, Inc. Fundamentals of Financial Management, 11/e Created by: Gregory A. Kuhlemeyer, Ph.D. Carroll College, Waukesha, WI

3-2 The Time Value of Money u The Interest Rate u Simple Interest u Compound Interest u Amortizing a Loan u The Interest Rate u Simple Interest u Compound Interest u Amortizing a Loan

3-3 $10,000 today Obviously, $10,000 today. TIME VALUE TO MONEY You already recognize that there is TIME VALUE TO MONEY!! The Interest Rate $10,000 today $10,000 in 5 years Which would you prefer -- $10,000 today or $10,000 in 5 years?

3-4 TIME INTEREST TIME allows you the opportunity to postpone consumption and earn INTEREST. Why TIME? TIME Why is TIME such an important element in your decision?

3-5 Types of Interest u Compound Interest Interest paid (earned) on any previous interest earned, as well as on the principal borrowed (lent). u Simple Interest Interest paid (earned) on only the original amount, or principal borrowed (lent).

3-6 Simple Interest Formula Formula FormulaSI = P 0 (i)(n) SI:Simple Interest P 0 :Deposit today (t=0) i:Interest Rate per Period n:Number of Time Periods

3-7 $140 u SI = P 0 (i)(n) = $1,000(.07)(2) = $140 Simple Interest Example u Assume that you deposit $1,000 in an account earning 7% simple interest for 2 years. What is the accumulated interest at the end of the 2nd year?

3-8 FV $1,140 FV = P 0 + SI = $1,000 + $140 = $1,140 u Future Value u Future Value is the value at some future time of a present amount of money, or a series of payments, evaluated at a given interest rate. Simple Interest (FV) Future Value FV u What is the Future Value (FV) of the deposit?

3-9 The Present Value is simply the $1,000 you originally deposited. That is the value today! u Present Value u Present Value is the current value of a future amount of money, or a series of payments, evaluated at a given interest rate. Simple Interest (PV) Present Value PV u What is the Present Value (PV) of the previous problem?

3-10 Why Compound Interest? Future Value (U.S. Dollars)

3-11 $1,000 2 years Assume that you deposit $1,000 at a compound interest rate of 7% for 2 years. Future Value Single Deposit (Graphic) $1,000 FV 2 7%

3-12 FV 1 P 0 $1,000 $1,070 FV 1 = P 0 (1+i) 1 = $1,000 (1.07) = $1,070 Compound Interest You earned $70 interest on your $1,000 deposit over the first year. This is the same amount of interest you would earn under simple interest. Future Value Single Deposit (Formula)

3-13 FV 1 P 0 $1,000 $1,070 FV 1 = P 0 (1+i) 1 = $1,000 (1.07) = $1,070 FV 2 P 0 $1,000 P 0 $1,000 $1, FV 2 = FV 1 (1+i) 1 = P 0 (1+i)(1+i) = $1,000(1.07)(1.07) = P 0 (1+i) 2 = $1,000(1.07) 2 = $1, $4.90 You earned an EXTRA $4.90 in Year 2 with compound over simple interest. Future Value Single Deposit (Formula) Future Value Single Deposit (Formula)

3-14 FV 1 FV 1 = P 0 (1+i) 1 FV 2 FV 2 = P 0 (1+i) 2 Future Value General Future Value Formula: FV n FV n = P 0 (1+i) n FV n FVIFSee Table I or FV n = P 0 (FVIF i,n ) -- See Table I General Future Value Formula etc.

3-15 FVIF FVIF i,n is found on Table I at the end of the book or on the card insert. Valuation Using Table I

3-16 FV 2 FVIF $1,145 FV 2 = $1,000 (FVIF 7%,2 ) = $1,000 (1.145) = $1,145 [Due to Rounding] Using Future Value Tables

3-17 TVM on the Calculator u Use the highlighted row of keys for solving any of the FV, PV, FVA, PVA, FVAD, and PVAD problems N:Number of periods I/Y:Interest rate per period PV:Present value PMT:Payment per period FV:Future value CLR TVM: Clears all of the inputs into the above TVM keys

3-18 Using The TI BAII+ Calculator NI/YPVPMTFV Inputs Compute  Focus on 3 rd row of keys (will be displayed in slides as shown above)

3-19 Entering the FV Problem Press: 2 nd CLR TVM 2 N 7 I/Y PV 0 PMT CPT FV

3-20 N:2 periods (enter as 2) I/Y:7% interest rate per period (enter as 7 NOT.07) PV:$1,000 (enter as negative as you have “less”) PMT:Not relevant in this situation (enter as 0) FV:Compute (Resulting answer is positive) Solving the FV Problem NI/YPVPMTFV Inputs Compute , ,144.90

3-21 $10,000 5 years Julie Miller wants to know how large her deposit of $10,000 today will become at a compound annual interest rate of 10% for 5 years. Story Problem Example $10,000 FV 5 10%

3-22 FV 5 FVIF $16,110 u Calculation based on Table I: FV 5 = $10,000 (FVIF 10%, 5 ) = $10,000 (1.611) = $16,110 [Due to Rounding] Story Problem Solution FV n FV 5 $16, u Calculation based on general formula: FV n = P 0 (1+i) n FV 5 = $10,000 ( ) 5 = $16,105.10

3-23 Entering the FV Problem Press: 2 nd CLR TVM 5 N 10 I/Y PV 0 PMT CPT FV

3-24 The result indicates that a $10,000 investment that earns 10% annually for 5 years will result in a future value of $16, Solving the FV Problem NI/YPVPMTFV Inputs Compute , ,105.10

3-25 “Rule-of-72”. We will use the “Rule-of-72”. Double Your Money!!! Quick! How long does it take to double $5,000 at a compound rate of 12% per year (approx.)?

Approx. Years to Double = 72 / i% 726 Years 72 / 12% = 6 Years [Actual Time is 6.12 Years] The “Rule-of-72” Quick! How long does it take to double $5,000 at a compound rate of 12% per year (approx.)?

3-27 The result indicates that a $1,000 investment that earns 12% annually will double to $2,000 in 6.12 years. Note: 72/12% = approx. 6 years Solving the Period Problem NI/YPVPMTFV Inputs Compute 12 -1, , years

3-28 $1,000 2 years. Assume that you need $1,000 in 2 years. Let’s examine the process to determine how much you need to deposit today at a discount rate of 7% compounded annually $1,000 7% PV 1 PV 0 Present Value Single Deposit (Graphic)

3-29 PV 0 FV 2 $1,000 FV 2 $ PV 0 = FV 2 / (1+i) 2 = $1,000 / (1.07) 2 = FV 2 / (1+i) 2 = $ Present Value Single Deposit (Formula) $1,000 7% PV 0

3-30 PV 0 FV 1 PV 0 = FV 1 / (1+i) 1 PV 0 FV 2 PV 0 = FV 2 / (1+i) 2 Present Value General Present Value Formula: PV 0 FV n PV 0 = FV n / (1+i) n PV 0 FV n PVIFSee Table II or PV 0 = FV n (PVIF i,n ) -- See Table II General Present Value Formula etc.

3-31 PVIF PVIF i,n is found on Table II at the end of the book or on the card insert. Valuation Using Table II

3-32 PV 2 $1,000 $1,000 $873 PV 2 = $1,000 (PVIF 7%,2 ) = $1,000 (.873) = $873 [Due to Rounding] Using Present Value Tables

3-33 N:2 periods (enter as 2) I/Y:7% interest rate per period (enter as 7 NOT.07) PV:Compute (Resulting answer is negative “deposit”) PMT:Not relevant in this situation (enter as 0) FV:$1,000 (enter as positive as you “receive $”) Solving the PV Problem NI/YPVPMTFV Inputs Compute ,

3-34 $10,0005 years Julie Miller wants to know how large of a deposit to make so that the money will grow to $10,000 in 5 years at a discount rate of 10%. Story Problem Example $10,000 PV 0 10%

3-35 PV 0 FV n PV 0 $10,000 $6, u Calculation based on general formula: PV 0 = FV n / (1+i) n PV 0 = $10,000 / ( ) 5 = $6, PV 0 $10,000PVIF $10,000 $6, u Calculation based on Table I: PV 0 = $10,000 (PVIF 10%, 5 ) = $10,000 (.621) = $6, [Due to Rounding] Story Problem Solution

3-36 Solving the PV Problem NI/YPVPMTFV Inputs Compute ,000 -6, The result indicates that a $10,000 future value that will earn 10% annually for 5 years requires a $6, deposit today (present value).

3-37 Types of Annuities u Ordinary Annuity u Ordinary Annuity: Payments or receipts occur at the end of each period. u Annuity Due u Annuity Due: Payments or receipts occur at the beginning of each period. u An Annuity u An Annuity represents a series of equal payments (or receipts) occurring over a specified number of equidistant periods.

3-38 Examples of Annuities u Student Loan Payments u Car Loan Payments u Insurance Premiums u Mortgage Payments u Retirement Savings

3-39 Parts of an Annuity $100 $100 $100 (Ordinary Annuity) End End of Period 1 End End of Period 2 Today Equal Equal Cash Flows Each 1 Period Apart End End of Period 3

3-40 Parts of an Annuity $100 $100 $100 (Annuity Due) Beginning Beginning of Period 1 Beginning Beginning of Period 2 Today Equal Equal Cash Flows Each 1 Period Apart Beginning Beginning of Period 3

3-41 FVA n FVA n = R(1+i) n-1 + R(1+i) n R(1+i) 1 + R(1+i) 0 Overview of an Ordinary Annuity -- FVA R R R n n n+1 FVA n R = Periodic Cash Flow Cash flows occur at the end of the period i%...

3-42 FVA 3 FVA 3 = $1,000(1.07) 2 + $1,000(1.07) 1 + $1,000(1.07) 0 $3,215 = $1,145 + $1,070 + $1,000 = $3,215 Example of an Ordinary Annuity -- FVA $1,000 $1,000 $1, $3,215 = FVA 3 7% $1,070 $1,145 Cash flows occur at the end of the period

3-43 Hint on Annuity Valuation end beginning The future value of an ordinary annuity can be viewed as occurring at the end of the last cash flow period, whereas the future value of an annuity due can be viewed as occurring at the beginning of the last cash flow period.

3-44 FVA n FVA 3 $3,215 FVA n = R (FVIFA i%,n ) FVA 3 = $1,000 (FVIFA 7%,3 ) = $1,000 (3.215) = $3,215 Valuation Using Table III

3-45 N:3 periods (enter as 3 year-end deposits) I/Y:7% interest rate per period (enter as 7 NOT.07) PV:Not relevant in this situation (no beg value) PMT:$1,000 (negative as you deposit annually) FV:Compute (Resulting answer is positive) Solving the FVA Problem NI/YPVPMTFV Inputs Compute ,000 3,214.90

3-46 FVAD n FVA n FVAD n = R(1+i) n + R(1+i) n R(1+i) 2 + R(1+i) 1 = FVA n (1+i) Overview View of an Annuity Due -- FVAD R R R R R n n-1 n FVAD n i%... Cash flows occur at the beginning of the period

3-47 FVAD 3 FVAD 3 = $1,000(1.07) 3 + $1,000(1.07) 2 + $1,000(1.07) 1 $3,440 = $1,225 + $1,145 + $1,070 = $3,440 Example of an Annuity Due -- FVAD $1,000 $1,000 $1,000 $1, $3,440 = FVAD 3 7% $1,225 $1,145 Cash flows occur at the beginning of the period

3-48 FVAD n FVAD n = R (FVIFA i%,n )(1+i) FVAD 3 $3,440 FVAD 3 = $1,000 (FVIFA 7%,3 )(1.07) = $1,000 (3.215)(1.07) = $3,440 Valuation Using Table III

3-49 Solving the FVAD Problem NI/YPVPMTFV Inputs Compute ,000 3, Complete the problem the same as an “ordinary annuity” problem, except you must change the calculator setting to “BGN” first. Don’t forget to change back! Step 1:Press2 nd BGNkeys Step 2:Press2 nd SETkeys Step 3:Press2 nd QUITkeys

3-50 PVA n PVA n = R/(1+i) 1 + R/(1+i) R/(1+i) n Overview of an Ordinary Annuity -- PVA R R R n n n+1 PVA n R = Periodic Cash Flow i%... Cash flows occur at the end of the period

3-51 PVA 3 PVA 3 = $1,000/(1.07) 1 + $1,000/(1.07) 2 + $1,000/(1.07) 3 $2, = $ $ $ = $2, Example of an Ordinary Annuity -- PVA $1,000 $1,000 $1, $2, = PVA 3 7% $ $ $ Cash flows occur at the end of the period

3-52 Hint on Annuity Valuation beginning end The present value of an ordinary annuity can be viewed as occurring at the beginning of the first cash flow period, whereas the present value of an annuity due can be viewed as occurring at the end of the first cash flow period.

3-53 PVA n PVA 3 $2,624 PVA n = R (PVIFA i%,n ) PVA 3 = $1,000 (PVIFA 7%,3 ) = $1,000 (2.624) = $2,624 Valuation Using Table IV

3-54 N:3 periods (enter as 3 year-end deposits) I/Y:7% interest rate per period (enter as 7 NOT.07) PV:Compute (Resulting answer is positive) PMT:$1,000 (negative as you deposit annually) FV:Not relevant in this situation (no ending value) Solving the PVA Problem NI/YPVPMTFV Inputs Compute , ,624.32

3-55 PVAD n PVA n PVAD n = R/(1+i) 0 + R/(1+i) R/(1+i) n-1 = PVA n (1+i) Overview of an Annuity Due -- PVAD R R R R n n-1 n PVAD n R: Periodic Cash Flow i%... Cash flows occur at the beginning of the period

3-56 PVAD n $2, PVAD n = $1,000/(1.07) 0 + $1,000/(1.07) 1 + $1,000/(1.07) 2 = $2, Example of an Annuity Due -- PVAD $1, $1,000 $1, $2, PVAD n $2, = PVAD n 7% $ $ Cash flows occur at the beginning of the period

3-57 PVAD n PVAD n = R (PVIFA i%,n )(1+i) PVAD 3 $2,808 PVAD 3 = $1,000 (PVIFA 7%,3 )(1.07) = $1,000 (2.624)(1.07) = $2,808 Valuation Using Table IV

Read problem thoroughly 2. Determine if it is a PV or FV problem 3. Create a time line 4. Put cash flows and arrows on time line 5. Determine if solution involves a single CF, annuity stream(s), or mixed flow 6. Solve the problem 7. Check with financial calculator (optional) Steps to Solve Time Value of Money Problems

3-59 Present Value 10% Julie Miller will receive the set of cash flows below. What is the Present Value at a discount rate of 10%? Mixed Flows Example $600 $600 $400 $400 $100 $600 $600 $400 $400 $100 PV 0 10%

3-60 piece-at-a-time piece 1.Solve a “piece-at-a-time” by discounting each piece back to t=0. group-at-a-time group 2.Solve a “group-at-a-time” by first breaking problem into groups of annuity streams and any single cash flow group. Then discount each group back to t=0. How to Solve?

3-61 “Piece-At-A-Time”“Piece-At-A-Time” $600 $600 $400 $400 $100 $600 $600 $400 $400 $100 10% $545.45$495.87$300.53$ $ $ = PV 0 of the Mixed Flow

3-62 “Group-At-A-Time” (#1) $600 $600 $400 $400 $100 $600 $600 $400 $400 $100 10% $1, $ $ $1, = PV 0 of Mixed Flow [Using Tables] $600(PVIFA 10%,2 ) = $600(1.736) = $1, $400(PVIFA 10%,2 )(PVIF 10%,2 ) = $400(1.736)(0.826) = $ $100 (PVIF 10%,5 ) = $100 (0.621) = $62.10

3-63 “Group-At-A-Time” (#2) $400 $400 $400 $400 $400 $400 $400 $400 PV 0 PV 0 equals$ $200 $200 $200 $ $100 $100 $1, $ $62.10 Plus Plus

3-64 General Formula: PV 0 FV n = PV 0 (1 + [i/m]) mn n: Number of Years m: Compounding Periods per Year i: Annual Interest Rate FV n,m : FV at the end of Year n PV 0 PV 0 : PV of the Cash Flow today Frequency of Compounding

3-65 $1,000 Julie Miller has $1,000 to invest for 2 years at an annual interest rate of 12%. 1,000 1, Annual FV 2 = 1,000(1+ [.12/1]) (1)(2) = 1, ,000 1, Semi FV 2 = 1,000(1+ [.12/2]) (2)(2) = 1, Impact of Frequency

3-66 1,000 1, Qrtly FV 2 = 1,000(1+ [.12/4]) (4)(2) = 1, ,000 1, Monthly FV 2 = 1,000(1+ [.12/12]) (12)(2) = 1, ,000 1, Daily FV 2 = 1,000(1+ [.12/365] ) (365)(2) = 1, Impact of Frequency

3-67 Effective Annual Interest Rate The actual rate of interest earned (paid) after adjusting the nominal rate for factors such as the number of compounding periods per year. (1 + [ i / m ] ) m - 1 Effective Annual Interest Rate

3-68 EAR Basket Wonders (BW) has a $1,000 CD at the bank. The interest rate is 6% compounded quarterly for 1 year. What is the Effective Annual Interest Rate (EAR)? EAR 6.14%! EAR= ( 1 + 6% / 4 ) = =.0614 or 6.14%! BW’s Effective Annual Interest Rate

Calculate the payment per period. 2.Determine the interest in Period t. (Loan balance at t-1) x (i% / m) principal payment 3.Compute principal payment in Period t. (Payment - interest from Step 2) principal payment 4.Determine ending balance in Period t. (Balance - principal payment from Step 3) 5.Start again at Step 2 and repeat. Steps to Amortizing a Loan

3-70 $10,000 Julie Miller is borrowing $10,000 at a compound annual interest rate of 12%. Amortize the loan if annual payments are made for 5 years. Step 1:Payment PV 0 PV 0 = R (PVIFA i%,n ) $10,000 $10,000 = R (PVIFA 12%,5 ) $10,000 $10,000 = R (3.605) R$10,000$2,774 R = $10,000 / = $2,774 Amortizing a Loan Example

3-71 Amortizing a Loan Example [Last Payment Slightly Higher Due to Rounding]

3-72 Usefulness of Amortization 2.Calculate Debt Outstanding 2.Calculate Debt Outstanding -- The quantity of outstanding debt may be used in financing the day-to-day activities of the firm. 1.Determine Interest Expense 1.Determine Interest Expense -- Interest expenses may reduce taxable income of the firm.