2.8 Absolute Value Functions

Slides:



Advertisements
Similar presentations
1.4 – Shifting, Reflecting, and Stretching Graphs
Advertisements

2.3 Stretching, Shrinking, and Reflecting Graphs
2.7: Use Absolute Value Functions and Transformations
Transformation of Functions Section 1.6. Objectives Describe a transformed function given by an equation in words. Given a transformed common function,
Lesson 5-8 Graphing Absolute Value Functions
Section 1.6 Transformation of Functions
2.7 - Absolute Value Functions and Transformations
1 The graphs of many functions are transformations of the graphs of very basic functions. The graph of y = –x 2 is the reflection of the graph of y = x.
2.7: Absolute Value Functions and Graphs
Graphical Transformations
2.7 Graphing Absolute Value Functions The absolute value function always makes a ‘V’ shape graph.
Graph Absolute Value Functions using Transformations
Special Functions and Graphs Algebra II …………… Sections 2.7 and 2.8.
Graphing Reciprocal Functions
Objective: To us the vertex form of a quadratic equation 5-3 TRANSFORMING PARABOLAS.
Transformations of functions
Graphing Absolute Value Functions using Transformations.
Graphing Rational Functions Through Transformations.
2.7 Absolute Value Tranformations
Today in Pre-Calculus Do NOT need a calculator Go over homework
2.7 Use Absolute Value Functions
Graphing Absolute Value Equations How do I make one of those V graphs?
Section 3.5 Graphing Techniques: Transformations.
Math-3 Lesson 1-3 Quadratic, Absolute Value and Square Root Functions
2.5 Shifting, Reflecting, and Stretching Graphs. Shifting Graphs Digital Lesson.
 .
Transformation of Functions Sec. 1.7 Objective You will learn how to identify and graph transformations.
2.7 – Use of Absolute Value Functions and Transformations.
Review of Transformations and Graphing Absolute Value
Vocabulary A nonlinear function that can be written in the standard form Cubic Function 3.1Graph Cubic Functions A function where f (  x) =  f (x).
Vocabulary The distance to 0 on the number line. Absolute value 1.9Graph Absolute Value Functions Transformations of the parent function f (x) = |x|.
1. g(x) = -x g(x) = x 2 – 2 3. g(x)= 2 – 0.2x 4. g(x) = 2|x| – 2 5. g(x) = 2.2(x+ 2) 2 Algebra II 1.
Section 1.4 Transformations and Operations on Functions.
1 PRECALCULUS Section 1.6 Graphical Transformations.
Algebra 2 5-R Unit 5 – Quadratics Review Problems.
Section 2.5 Transformations Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Warm-Up Evaluate each expression for x = -2. 1) (x – 6) 2 4 minutes 2) x ) 7x 2 4) (7x) 2 5) -x 2 6) (-x) 2 7) -3x ) -(3x – 1) 2.
Transforming Linear Functions
1.5 Graphical Transformations Represent translations algebraically and graphically.
Shifting, Reflecting, & Stretching Graphs 1.4. Six Most Commonly Used Functions in Algebra Constant f(x) = c Identity f(x) = x Absolute Value f(x) = |x|
Precalc – 1.5 Shifting, reflecting, and stretching graphs.
Transforming Linear Functions
Lesson 2-6 Families of Functions.
Transformations of Graphs
Use Absolute Value Functions and Transformations
Absolute Value Functions
Graph Absolute Value Functions using Transformations
2.6 Translations and Families of Functions
Use Absolute Value Functions and Transformations
Graph Absolute Value Functions using Transformations
Graph Absolute Value Equations
Graph Absolute Value Functions using Transformations
Lesson 5-1 Graphing Absolute Value Functions
Chapter 15 Review Quadratic Functions.
Rev Graph Review Parent Functions that we Graph Linear:
Chapter 2: Analysis of Graphs of Functions
Graph Transformations
Chapter 15 Review Quadratic Functions.
Section 1.6 Transformation of Functions
y x Lesson 3.7 Objective: Graphing Absolute Value Functions.
2.7 Graphing Absolute Value Functions
Transformation rules.
2-6 Families of Functions
2.7 Graphing Absolute Value Functions
2.1 Transformations of Quadratic Functions
Graphing Absolute Value Functions
6.4a Transformations of Exponential Functions
1.5b Combining Transformations
6.4c Transformations of Logarithmic functions
Presentation transcript:

2.8 Absolute Value Functions Goals: To graph absolute value functions To identify transformations of absolute value functions.

Graphing on TI-83/84 Press Y= Enter equation into Y= screen For absolute value, press MATH-RightArrow-1 Be sure to close off parentheses

The general absolute value equation: if -, then Reflection Across the X-axis (RAX) if + b, horizontal shift left b. If – b, horizontal shift right b. if a > 1, vertical shrink by a factor of a. if a < 1, vertical stretch by a factor of a. if + c, vertical shift up c. If – c, vertical shift down c.

Graphing Absolute Value Functions Graph the vertex Plot two points on either side of the vertex Use the slope/plug it in and the fact that the graph is symmetric Connect three points to make a v-shaped graph

What are the transformations of the following equations? h. shift right 2 v. shift up 5 1) RAX h. shift left 7 v. shift down 14 2) v. stretch by a factor of 2/3 h. shift left 1 3) RAX v. shrink by a factor of 4 h. shift right 10 v. shift down 3 4)

Graph the function – name 3 points 1) x y

Graph the function – name 3 points 2) x y

Graph the function – name 3 points 3) x y

Graph the function – name 3 points 4) x y

State the transformations and then graph the function x y

Homework p. 126 18-25 all 34-36 all