The Vertical Distribution of Atmospheric CO 2 and the Latitudinal Partitioning of Global Carbon Fluxes Britton Stephens – NCAR Co-authors - Kevin R. Gurney,

Slides:



Advertisements
Similar presentations
Atmospheric inversion of CO 2 sources and sinks Northern Hemisphere sink Jay S. Gregg.
Advertisements

GHG Verification & the Carbon Cycle 28 September 2010 JH Butler, NOAA CAS Management Group Meeting Page 1 Global Monitoring, Carbon Cycle Science, and.
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
Tropical vs. extratropical terrestrial CO 2 uptake and implications for carbon-climate feedbacks Outline: How we track the fate of anthropogenic CO 2 Historic.
A direct carbon budgeting approach to infer carbon sources and sinks from the NOAA/ESRL Aircraft Network Colm Sweeney 1, Cyril Crevoisier 2, Wouter Peters.
Niall P. Hanan 1, Christopher A. Williams 1, Joseph Berry 2, Robert Scholes 3 A. Scott Denning 1, Jason Neff 4, and Jeffrey Privette 5 1. Colorado State.
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
Stephen M. Ogle, Dan Cooley, Tristram West, Andrew Schuh, Ken Davis, F. Jay Breidt, Arlyn Andrews, Linda Heath, Kevin Gurney, and Scott Denning Resolving.
FACTORS GOVERNING THE SEASONAL VARIABILITY OF ATMOSPHERIC CARBONYL SULFIDE Parv Suntharalingam Harvard/Univ. of East Anglia A.J. Kettle, S. Montzka, D.
GERFS1 Top-down approach to estimation of the regional carbon budget in West Siberia S. Maksyutov (1) T. Machida, K. Shimoyama, N.Kadygrov, A. Itoh (1)
TransCom 3 Level 2 Base Case Inter-annual CO 2 Flux Inversion Results Current Status David Baker, Rachel Law, Kevin Gurney, Peter Rayner, TransCom3 L2.
Modelling Atmospheric CO2 Vertical Profiles TRANSCOM PARIS 2005 Christopher Pickett – Heaps  PhD Student (Univ. of Melbourne, AUS)  Supervisor:Dr. Peter.
T3 evolution Level 1: Annual mean control inversion (Nature paper) Annual mean flux sensitivity and model-to-model (Tellus) Annual mean data sensitivity.
Simulations of carbon transport in CCM3: uncertainties in C sinks due to interannual variability and model resolution James Orr (LSCE/CEA-CNRS and IPSL,
Prabir K. Patra Acknowledgments: S. Maksyutov, K. Gurney and TransCom-3 modellers TransCom Meeting, Paris; June 2005 Sensitivity CO2 sources and.
A brief analysis of the TransCom3 Continuous data Experiment at ECMWF Soumia SERRAR and Richard Engelen.
Interannual variability in CO2 fluxes derived from 64-region inversion of atmospheric CO2 data Prabir K. Patra*, Shamil Maksyutov*, Misa Ishizawa*, Takakiyo.
TransCom 3 Level 2 Base Case Inter-annual CO 2 Flux Inversion Results Current Status David Baker, Rachel Law, Kevin Gurney, Peter Rayner, TransCom3 L2.
Compatibility of surface and aircraft station networks for inferring carbon fluxes TransCom Meeting, 2005 Nir Krakauer California Institute of Technology.
Prabir K. Patra, Shamil Maksyutov, A. Ito and TransCom-3 modellers Jena; 13 May 2003 An evaluation of an ecosystem model for studying CO2 seasonal cycle.
Global simulation of H 2 and HD with GEOS-CHEM Heather Price 1, Lyatt Jaeglé 1, Paul Quay 2, Andrew Rice 2, and Richard Gammon 2 University of Washington,
Upper-Air Inter-Comparison Experiment Update Presented By Philippe Peylin on behalf of Christopher Pickett – Heaps & Peter Rayner.
Testing the consistency of T3L2 Cyclo-stationary fluxes with  13 C observations John Miller 1, Scott Denning 2, Neil Suits 2, Kevin Gurney 2, Jim White.
Evaluating the Impact of the Atmospheric “ Chemical Pump ” on CO 2 Inverse Analyses P. Suntharalingam GEOS-CHEM Meeting, April 4-6, 2005 Acknowledgements.
Investigating Representation Errors in Inversions of Satellite CO 2 Retrievals K.D. Corbin, A.S. Denning, N.C. Parazoo Department of Atmospheric Science.
NOCES meeting Plymouth, 2005 June Top-down v.s. bottom-up estimates of air-sea CO 2 fluxes : No winner so far … P. Bousquet, A. Idelkadi, C. Carouge,
Modeling CO 2 and its sources and sinks with GEOS-Chem Ray Nassar 1, Dylan B.A. Jones 1, Susan S. Kulawik 2 & Jing M. Chen 1 1 University of Toronto, 2.
Evaluating the Role of the CO 2 Source from CO Oxidation P. Suntharalingam Harvard University TRANSCOM Meeting, Tsukuba June 14-18, 2004 Collaborators.
Data assimilation of atmospheric CO 2 at ECMWF in the context of the GEMS project Richard Engelen ECMWF Thanks to Soumia Serrar and Frédéric Chevallier.
THERE’S A RECTIFIER IN MY CLOSET: Vertical CO 2 Transport and Latitudinal Flux Partitioning Britton Stephens, National Center for Atmospheric Research.
Impact of Reduced Carbon Oxidation on Atmospheric CO 2 : Implications for Inversions P. Suntharalingam TransCom Meeting, June 13-16, 2005 N. Krakauer,
Cyclo-stationary inversions of  13 C and CO 2 John Miller, Scott Denning, Wouter Peters, Neil Suits, Kevin Gurney, Jim White & T3 Modelers.
The seasonal and interannual variability in atmospheric CO 2 is simulated using best available estimates of surface carbon fluxes and the MATCH atmospheric.
Le Kuai 1, John Worden 2, Elliott Campbell 3, Susan S. Kulawik 4, Meemong Lee 2, Stephen A. Montzka 5, Joe Berry 6, Ian Baker 7, Scott Denning 7, Randy.
A Decline in the Northern Hemisphere CO 2 Sink from John Miller 1, Pieter Tans 1, Jim White 2, Ken Masarie 1, Tom Conway 1, Bruce Vaughn 2,
Light Aircraft CO 2 Observations and the Global Carbon Cycle Britton Stephens, NCAR EOL and TIIMES Collaborating Institutions: USA: NOAA GMD, CSU, France:
THERE’S A RECTIFIER IN MY CLOSET: Vertical CO 2 Transport and Latitudinal Flux Partitioning Britton Stephens, National Center for Atmospheric Research.
Regional Inversion of continuous atmospheric CO 2 measurements A first attempt ! P., P., P., P., and P. Philippe Peylin, Peter Rayner, Philippe Bousquet,
CO 2 Diurnal Profiling Using Simulated Multispectral Geostationary Measurements Vijay Natraj, Damien Lafont, John Worden, Annmarie Eldering Jet Propulsion.
CO 2 and O 2 Concentration Measurements Britton Stephens, NCAR/ATD Peter Bakwin, NOAA/CMDL Global carbon cycle Regional scale CO 2 measurements Potential.
Aircraft CO 2 Observations and Global Carbon Budgeting Britton Stephens, NCAR EOL and TIIMES Collaborating Institutions: USA: NOAA GMD, CSU, France: LSCE,
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
Click to edit Master title style Click to edit Master text styles –Second level Third level –Fourth level »Fifth level 1 List of Nominations Closing in.
P. K. Patra*, R. M. Law, W. Peters, C. Rodenbeck et al. *Frontier Research Center for Global Change/JAMSTEC Yokohama, Japan.
Global trends in CH 4 and N 2 O Matt Rigby, Jin Huang, Ron Prinn, Paul Fraser, Peter Simmonds, Ray Langenfelds, Derek Cunnold, Paul Steele, Paul Krummel,
Atmospheric Carbon Observations Britton Stephens NCAR Atmospheric Technology Division Existing measurements: - Absolute and relative - In situ and flask.
Atmospheric O 2 Measurements in HIPPO (HIAPER Pole-to- Pole Observations of Atmospheric Tracers) Britton Stephens, NCAR EOL and TIIMES.
Measurements of atmospheric O 2 in relation to the ocean carbon cycle Ralph Keeling Scripps Institution of Oceanography.
Global Carbon Cycle Model-Data Fusion Britton Stephens, EOL and TIIMES.
Carbon dioxide from TES Susan Kulawik F. W. Irion Dylan Jones Ray Nassar Kevin Bowman Thanks to Chip Miller, Mark Shephard, Vivienne Payne S. Kulawik –
WP11 highlights: introduction and overview EU FP6 Integrated Project CARBOOCEAN ”Marine carbon sources and sinks assessment” 5 th Annual & Final Meeting.
Regional CO 2 Flux Estimates for North America through data assimilation of NOAA CMDL trace gas observations Wouter Peters Lori Bruhwiler John B. Miller.
AGU2012-GC31A963: Model Estimates of Pan-Arctic Lake and Wetland Methane Emissions X.Chen 1, T.J.Bohn 1, M. Glagolev 2, S.Maksyutov 3, and D. P. Lettenmaier.
The evolution of climate modeling Kevin Hennessy on behalf of CSIRO & the Bureau of Meteorology Tuesday 30 th September 2003 Canberra Short course & Climate.
Downscaling the NOAA CarbonTracker Inversion for North America Gabrielle Petron 1,2, Arlyn E. Andrews 1, Michael E. Trudeau 1,2,3, Janusz Eluszkiewicz.
Comparing Global Carbon Cycle Models to Observations is Hard but Better Than the Alternative Britton Stephens, National Center for Atmospheric Research.
HIPPO: Global Carbon Cycle Britton Stephens, NCAR EOL and TIIMES.
Model-Data Comparison of Mid-Continental Intensive Field Campaign Atmospheric CO 2 Mixing Ratios Liza I. Díaz May 10, 2010.
Aircraft CO 2 Observations and the Missing Carbon Sink Britton Stephens, NCAR EOL and TIIMES Collaborating Institutions: USA: NOAA GMD, CSU, France: LSCE,
Impact of climate change on the global oceanic sink of CO 2 Corinne Le Quéré, University of East Anglia and British Antarctic Survey.
Surprises in the anthropogenic carbon budget Why OCB is so important! Jorge Sarmiento Princeton University Co-lead author of the US Carbon Cycle Science.
HIAPER Pole-to-Pole Observations of Atmospheric Tracers (HIPPO) Britton Stephens, NCAR EOL and TIIMES.
ESF workshop on methane, April 10-12, years of methane : from global to regional P. Bousquet, S. Kirschke, M. Saunois, P. Ciais, P. Peylin, R.
CO2 sources and sinks in China as seen from the global atmosphere
Carbon Cycle Observations and Instrumentation
Effects of drought and fire on interannual variability in CO2 as derived using atmospheric-CO2 inversion Prabir K. Patra Acknowledgements to: M. Ishizawa,
Atmospheric CO2 and O2 Observations and the Global Carbon Cycle
HIPPO1-3 Large-Scale CO2 Gradients
CO2 and O2 Concentration Measurements
Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems by Matthias Forkel, Nuno Carvalhais, Christian Rödenbeck,
Presentation transcript:

The Vertical Distribution of Atmospheric CO 2 and the Latitudinal Partitioning of Global Carbon Fluxes Britton Stephens – NCAR Co-authors - Kevin R. Gurney, Pieter P. Tans, Colm Sweeney, Wouter Peters, Lori Bruhwiler, Philippe Ciais, Michel Ramonet, Philippe Bousquet, Takakiyo Nakazawa, Shuji Aoki, Toshinobu Machida, Gen Inoue, Nikolay Vinnichenko, Jon Lloyd, Armin Jordan, Martin Heimann, Olga Shibistova, Ray L. Langenfelds, L. Paul Steele, Roger J. Francey, A. Scott Denning Using data from NOAA/GMD, LSCE, CSIRO, NIES, MPIB, and Tohoku Univ.; Transcom3 model output; and NOAA/GMD and LSCE models.

Gurney et al, Nature, 2002 TransCom3 model results based on surface data imply a large transfer of carbon from tropical to northern land regions. Level 1 (annual mean) Level 2 (seasonal) Gurney et al, GBC, 2004

[courtesy of Scott Denning]

TransCom3 predicted rectifier effects explain most of the variability in estimated fluxes. Response to neutral biosphere flux Impact on predicted fluxes

[courtesy of Scott Denning]

Northern Hemisphere sites include Briggsdale, Colorado, USA (CAR); Estevan Point, British Columbia, Canada (ESP); Molokai Island, Hawaii, USA (HAA); Harvard Forest, Massachusetts, USA (HFM); Park Falls, Wisconsin, USA (LEF); Poker Flat, Alaska, USA (PFA); Orleans, France (ORL); Sendai/Fukuoka, Japan (SEN); Surgut, Russia (SUR); and Zotino, Russia (ZOT). Southern Hemisphere sites include Rarotonga, Cook Islands (RTA) and Bass Strait/Cape Grim, Australia (AIA). Map of airborne flask sampling locations

Based on fits to samples binned by altitude and averaged over different seasonal intervals. A smoothed deseasonalized record from Mauna Loa has been subtracted from the observations at each site. Black lines in each panel represent northern-hemisphere average profiles for the same times. The x-axis in B is zoomed by a factor of 2 relative to that in A and C. Midday vertical CO 2 profiles measured at 12 locations

Model output was processed in the same way as the observations at each site before averaging. Symbols indicate 1 km and 4 km values used for calculating vertical gradients. The x-axis in B is zoomed by a factor of 2 relative to that in A and C. Observed and predicted northern-hemisphere average profiles

Estimated by the 12 T3L2 models for the 1992 to 1996 time period. The x-axis represents the predicted northern-hemisphere vertical CO 2 difference between 1 km and 4 km altitude at these same times. Gray bars indicate the observed vertical CO 2 gradient and uncertainties. Northern-land and tropical-land estimated fluxes as a function of the models’ predicted vertical CO 2 gradients

Interlaboratory calibration offsets and measurement errors Diurnal biases Interannual variations and long-term trends Flight-day weather bias Spatial and Temporal Representativeness Observational and modeling biases evaluated using complementary data sets and models:

3 models that most closely reproduce the observed annual-mean vertical CO 2 gradients (4, 5, and C): northern land uptake = -1.5 ± 0.6 PgCyr -1 tropical land emission = +0.1 ± 0.8 PgCyr -1 All model average: northern land uptake = -2.4 ± 1.1 PgCyr -1 tropical land emission = +1.8 ± 1.7 PgCyr -1 Models with large tropical sources and large northern uptake are inconsistent with observed vertical gradients. A global budget with less tropical  north carbon transfer is also more consistent with bottom-up estimates. Conclusions: