Measurements of plasma turbulence by laser scattering in the Wendelstein 7-AS stellarator Nils P. Basse 1,2, S. Zoletnik, M. Saffman, P. K. Michelsen and.

Slides:



Advertisements
Similar presentations
Device Parameters of Heliotron J Coil System L=1/M=4 helical coil 0.96MAT Toroidal coil A0.6MAT Toroidal coil B 0.218MAT Main vertical coil 0.84MAT Inner.
Advertisements

DPP 2006 Reduction of Particle and Heat Transport in HSX with Quasisymmetry J.M. Canik, D.T.Anderson, F.S.B. Anderson, K.M. Likin, J.N. Talmadge, K. Zhai.
Physics of fusion power Lecture 11: Diagnostics / heating.
Physics of fusion power
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
IPP Stellarator Reactor perspective T. Andreeva, C.D. Beidler, E. Harmeyer, F. Herrnegger, Yu. Igitkhanov J. Kisslinger, H. Wobig O U T L I N E Helias.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
MCZ Equilibrium and Stability of High-  Plasmas in Wendelstein 7-AS M.C. Zarnstorff 1, A. Weller 2, J. Geiger 2, E. Fredrickson 1, S. Hudson.
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
Physics of fusion power Lecture 10 : Running a discharge / diagnostics.
Physics of Fusion power Lecture 7: Stellarator / Tokamak.
IAEA 2004 ICRH Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1, F.V.Chernyshev 1, V.V.Dyachenko 1, Yu.V.Petrov 1, N.V.Sakharov 1, O.N.Shcherbinin.
Imaging Diagnostics at the H-1 National Plasma Fusion Research Facility Left: The coherence tomography system Above: Plasma emission reconstructions compared.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
Collective Thomson Scattering Diagnostics of Confined Fast Ions Paul Woskov 1, S. B. Korsholm 1,2, H. Bindslev 2, J. Egedal 1, F.Leipold 2, F. Meo 2, P.
Reflectometry on Alcator C-Mod: Status and future upgrades Outline: C-Mod reflectometry Physics examples Upgrades: 1.High frequency 2.Sideband 3.Data acquisition.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,
Edge ECE measurements with the AUG CTS receiver and the effects of ELMs during H-mode Morten Stejner.
L. Chen US TTF meeting, 2014 April 22-25, San Antonio, Texas 1 Study on Power Threshold of the L-I-H Transition on the EAST Superconducting Tokamak L.
30 th EPS conference, St. Petersburg, Russia, July, 7-11, 2003 K.M.Likin On behalf of HSX Team University of Wisconsin-Madison, USA Comparison of Electron.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
Interplay between confinement, turbulence and magnetic topology Nils P. Basse, S. Zoletnik 1, W. L. Rowan 2 et al. MIT Plasma Science and Fusion Center.
The toroidal current is consistent with numerical estimates of bootstrap current The measured magnetic diagnostic signals match predictions of V3FIT Comparisons.
Physics of fusion power Lecture 10: tokamak – continued.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
Interplay between magnetic topology, density fluctuations and confinement in high-  Wendelstein 7-AS plasmas Nils P. Basse 1 Association EURATOM – Risø.
Characterization of core and edge turbulence in L- and H-mode Alcator C-Mod plasmas Outline: Alcator C-Mod tokamak Fluctuation diagnostics Low to high.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
Study of NSTX Electron Density and Magnetic Field Fluctuation using the FIReTIP System K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
Measurement of toroidal rotation velocity profiles in KSTAR S. G. Lee, Y. J. Shi, J. W. Yoo, J. Seol, J. G. Bak, Y. U. Nam, Y. S. Kim, M. Bitter, K. Hill.
Edge and Internal Transport Barrier Formations in CHS S. Okamura, T. Minami, T. Akiyama, T. Oishi 1, A. Fujisawa, K. Ida, H. Iguchi, M. Isobe, S. Kado.
Temporal separation of turbulent time series: Measurements and simulations Nils P. Basse 1,2, S. Zoletnik, M. Saffman, G. Antar, P. K. Michelsen and the.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
TEC Trilateral Euregio Cluster Institut für PlasmaphysikAssoziation EURATOM-Forschungszentrum Jülich 21st IAEA Fusion Energy Conference, October.
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
FEC 2006 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Multi-scale turbulence experiment in HT-7 takamak Li Yadong Li Jiangang Zhang Xiaodong Ren Zhong Zhang Tou Lin Shiyao and HT-7 Team Institute of plasma.
GOLEM operation based on some results from CASTOR
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
Charge Exchange Spectroscopic Diagnostic for the TJ-II José Miguel Carmona Torres Laboratorio Nacional de Fusion EURATOM-CIEMAT.
D-Alpha Fast-Ion Diagnostic: Recent Results from DIII-D W.W. Heidbrink, UC Irvine D-Alpha Diagnostic: Yadong Luo, K. Burrell, + Ion Cyclotron Heating:
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado ECE spectrum of HSX plasma at 0.5 T K.M.Likin, H.J.Lu, D.T.Anderson,
Interplay between confinement, turbulence and magnetic topology Nils P. Basse MIT Plasma Science and Fusion Center This proposal originates from density.
1) For equivalent ECRH power, off-axis heating results in lower stored energy and lower core temperature 2) Plasma flow is significantly reduced with off-axis.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
APS, 44th Annual Meeting of the Division of Plasma Physics November 11-15, 2002; Orlando, Florida Hard X-ray Diagnostics in the HSX A. E. Abdou, A. F.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
51st Annual Meeting of the Division of Plasma Physics, November 2 - 6, 2009, Atlanta, Georgia ∆I BS = 170 Amps J BS e-root J BS i-root Multiple ambipolar.
Measurement of Electron Density Profile and Fluctuations on HSX C. Deng, D.L. Brower, W.X. Ding Electrical Engineering Department University of California,
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
= 2·10 18 m -3 T e (0) = 0.4 keV ECH and ECE on HSX Stellarator K.M.Likin, A.F.Almagri, D.T.Anderson, F.S.B.Anderson, C.Deng 1, C.W.Domier 2, R.W.Harvey.
Development and applications of submillimeter wave gyrotron FU series
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Mechanisms for losses during Edge Localised modes (ELMs)
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik1, D.L. Brower2, C. Deng2,
Turbulence associated with the control of internal transport barriers
in tokamaks and stellarators
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
M4 m4 WHAT IS A TOKAMAK? Graphic: EUROfusion, Reinald Fenke, CC BY 4.0,
The GDT device at the Budker Institute of Nuclear Physics is an experimental facility for studies on the main issues of development of fusion systems based.
Figure 16.1: Illustration of a fusion reaction.
Presentation transcript:

Measurements of plasma turbulence by laser scattering in the Wendelstein 7-AS stellarator Nils P. Basse 1,2, S. Zoletnik, M. Saffman, P. K. Michelsen and the W7-AS Team 1 Association EURATOM – Risø National Laboratory, Denmark 2 Ørsted Laboratory, Niels Bohr Institute for Astronomy, Physics and Geophysics, Denmark 1. The Wendelstein 7-AS (W7-AS) stellarator 2. The density fluctuation diagnostic 3. Measurements Student visit, 21st of November 2001, Risø, Denmark

Wendelstein Situated in Bayern, height 1838 m

The W7-AS stellarator The ’stellarator’ was invented by Lyman Spitzer, Jr., in 1951 A fusion machine has 3 main parts: The vacuum vessel containing the plasma A system of coils (W7-AS: 45 modular coils, 10 planar coils) creating the magnetic field required External heating systems

The W7-AS stellarator Machine size: Major radius R = 2 m, minor radius a  0.18 m Rotational transform  = n/m = poloidal/toroidal winding number is between 0.3 and 0.6 (safety factor q = 1/  ) Maximum temperatures: T e = 7 keV, T i = 2 keV Maximum density: n e = 4  m -3 Maximum normalised plasma pressure:  = p/(B 2 /2  0 ) = 3.1 % (average value)

The W7-AS flux surfaces To visualise the magnetic field structure as a function of the toroidal angle , one can calculate flux surfaces on which the magnetic field and plasma current wind helically (shown here for  = 0.344) External heating systems: Electron cyclotron resonance (ECR) heating: Gyrotrons at 70 and 140 GHz, total power 2.5 MW Neutral beam injection (NBI) heating: 4 MW

The W7-AS divertor

The density fluctuation diagnostic Diagnostic installed on the W7-AS stellarator Small angle collective scattering of infrared light (radiation source is a CO 2 laser) Heterodyne, dual volume system (only 1 volume shown for clarity) Wavenumber range is from 14 to 62 cm -1 M. Saffman et al., Rev. Sci. Instrum. 72 (2001) 2579

The density fluctuation diagnostic Diagnostic installed on the W7-AS stellarator Small angle collective scattering of infrared light (radiation source is a CO 2 laser) Heterodyne, dual volume system (only 1 volume shown for clarity) Wavenumber range is from 14 to 62 cm -1 M. Saffman et al., Rev. Sci. Instrum. 72 (2001) 2579

Current ramp experiments A net plasma current can be created using an Ohmic (OH) external transformer The current alters the rotational transform  The plasma confinement quality depends sensitively on  Plasma energy versus  and the vertical magnetic field B z Electron temperature

Current ramp experiments: Wide beam localisation

Current ramp experiments: Narrow beam localisation

The ultra high density mode

Right: Autopower spectrum versus frequency and time, bad confinement Left: Autopower spectrum versus frequency and time, good confinement

The ultra high density mode Good confinement: Dotted line Bad confinement: Solid line

The ultra high density mode Top rows: Left: Autopower integrated over all frequencies [-3,3] MHz versus shot number Right: Autopower integrated over [-3,-1.2] MHz versus shot number Bottom rows (identical): Stored energy versus shot number

Low- and high confinement mode Right-hand figure: Autopower spectra from a W7-AS shot displaying three distinct phases: 1. L-mode ms 2. Dithering H-mode ms 3. ELM-free H-mode ms Left-hand figure: Autopower spectra from a DIII-D discharge. C. L. Rettig et al., Phys. Plasmas 4 (1997) 4009