2008 Renormalization-group investigation of the 2D Hubbard model A. A. Katanin a,b a Institute of Metal Physics, Ekaterinburg, Russia b Max-Planck Institut.

Slides:



Advertisements
Similar presentations
1 A.A. Katanin a,b and A.P. Kampf a 2003 a Theoretische Physik III, Institut für Physik, Universität Augsburg, Germany b Institute of Metal Physics, Ekaterinburg,
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Fermion-Boson RG for the Ground- state of Fermionic Superfluids Philipp Strack, W. Metzner, R. Gersch Max-Planck-Institute for Solid State Research, Stuttgart.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Pairing of critical Fermi-surface states
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi-Liquid description of spin-charge separation & application to cuprates T.K. Ng (HKUST) Also: Ching Kit Chan & Wai Tak Tse (HKUST)
Functional renormalization – concepts and prospects.
Functional renormalization – concepts and prospects.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Functional renormalization group equation for strongly correlated fermions.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
Many-body Green’s Functions
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Ferromagnetic properties of quark matter a microscopic origin of magnetic field in compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction.
Fluctuation conductivity of thin films and nanowires near a parallel-
System and definitions In harmonic trap (ideal): er.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Superconductivity from repulsion School and workshop on “Novel materials and novel theories” Trieste, August 10, 2015 Andrey Chubukov University of Minnesota.
Symmetry breaking in the Pseudogap state and Fluctuations about it Schematic Universal phase diagram of high-T c superconductors MarginalFermi-liquid Fermi.
Phase transitions in Hubbard Model. Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier,
Self-generated instability of a ferromagnetic quantum-critical point
Disordered Electron Systems II Roberto Raimondi Perturbative thermodynamics Renormalized Fermi liquid RG equation at one-loop Beyond one-loop Workshop.
Zheng-Yu Weng IAS, Tsinghua University
Challenges for Functional Renormalization. Exact renormalization group equation.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
FIELD THEORETICAL RG FOR A 2D FERMI SURFACE
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Quantum exotic states in correlated topological insulators Su-Peng Kou ( 寇谡鹏 ) Beijing Normal University.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Mott Transition and Superconductivity in Two-dimensional
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Talk online: sachdev.physics.harvard.edu.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
ARPES studies of unconventional
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Review on quantum criticality in metals and beyond
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Charge Instabilities At The Metamagnetic Transition
10 Publications from the project
How might a Fermi surface die?
FSU Physics Department
QCD at very high density
Presentation transcript:

2008 Renormalization-group investigation of the 2D Hubbard model A. A. Katanin a,b a Institute of Metal Physics, Ekaterinburg, Russia b Max-Planck Institut für Festkörperforschung, Stuttgart Many thanks for collaboration to: A. P. Kampf (Institut für Physik, Universität Augsburg) W. Metzner (Max-Planck Institut für Festkörperforschung, Stuttgart) Partnergroup

2 I.The model II.The field theoretical and functional RG approaches III.Phase diagrams IV.Fulfillment of Ward Identities V.The two-loop corrections VI.Conclusions and future perspectives Content

3 The 2D Hubbard model Why it is interesting: Non-trivial Gives a possibility of rigorous numerical and semi- analytical RG treatment. The weak-coupling regime U < W /2 Cuprates (Bi2212) La 2-x Sr x CuO 4 Bi2212 Experimental relevance: high-T c cuprates A. Ino et al., Journ. Phys. Soc. Jpn, 68, 1496 (1999). D.L. Feng et al., Phys. Rev. B 65, (2002) U t t' Provides a prototype model of interacting fermionic systems leading to nontrivial physics

The case of general Fermi surface  Possible types of instabilities:  Superconducting (only for U<0)  Ferro- and antiferromagnetic instabilities are not in the weak-coupling regime k1,k1, k 2,  ' k3,k3, k4,'k4,' k 1 =  k 2 ; k 3 =  k 4 : BCS channel k 1 = k 3 ; k 2 = k 4 : ZS channel k 1 = k 4 ; k 2 = k 3 : ZS' channel There is no ‘interference’ between different channels (channel separation) kFkF The Fermi liquid k 1 +  k 2 =k 3 + k 4 = = k k+qk+q k q-k

5 The parameter space  t'/t n The line of van Hove singularities   Nesting Questions to answer: What are the possible instabilities for t-t' dispersion? How do they depend on the form of the Fermi surface, model parameters e.t.c. ? Instabilities are possible due to the peculiarities of the electron spectrum: nesting (  k  k+Q ) n=1; t'=0; van Hove singularities (  k =0 ) n=n VH ; any t'

Theoretical approaches  Parquet approach (V.V. Sudakov, 1957; I.E. Dzyaloshinskii, 1966; I.E. Dzyaloshinskii and V.M. Yakovenko, 1988)  Functional renormalization group approach  Polchinskii equations (D. Zanchi and H.J. Schulz, 1996; 2000)  Wick-ordered equations (M. Salmhofer, 1998; C.J. Halboth and W. Metzner, 2000; D. Rohe and W. Metzner, 2005)  Equations for 1PI functional (M. Salmhofer, T.M. Rice, N. Furukawa, and C. Honerkamp, 2001)  Equations for 1PI functional with temperature cutoff (M. Salmhofer and C. Honerkamp, 2001; A. Katanin and A. P. Kampf, 2003, 2004)  Continuous unitary transformations (C.P. Heidbrink and G. Uhrig, 2001; I. Grote, E. Körding and F. Wegner, 2001)  Field-theory renormalization group approach (P. Lederer et al., 1987; T.M. Rice, N. Furukawa, and M. Salmhofer, 1999; A.A. Katanin, V.Yu. Irkhin and M.I. Katsnelson, 2001; B. Binz, D. Baeriswyl, and B. Doucot, 2001)

7 The field-theory (two-patch) approach Similar to the “left” and “right” moving particles in 1D But the geometry of the Fermi surface and the dispersion are different ! 22 B A

8 The two patch equations at T » |  Possible types of vertices There is no separation of the channels: each vertex is renormalized by all the channels

9 The vertices: scale dependence g1g1 g 2 (inter-patch direct) g 3 (umklapp) g4g4 g 1 (inter-patch exchange) g2g2 g3g3 g 4 (intra-patch) (  ) (  ) U=2t, t'/t=0.45 (n VH =0.47) U=2t, t'/t=0.1 (n VH =0.92)

10 Phase diagram: vH band fillings 32 - patch fRG approach T=0,  =0

Functional renormalization group o Projecting momenta to the Fermi surface o Projecting frequencies to zero o patches on the Fermi surface (after M. Salmhofer and C. Honerkamp, 2001)

12 1PI functional RG Considers the evolution of the 1PI generating functional (T. Morris, 1994; M. Salmhofer and C. Honerkamp, 2001) Expands in fields Obtains the equations for the coefficients of the expansion where … Truncates the hierarchy of equations, e.g.

13 1PI scheme  Temperature cutoff

14 Phase diagram: vH band fillings 32 - patch fRG approach T=0,  =0

15 Ward identities (23) and the mean-field-type result for the self-energy, is fulfilled up to the order V 2 only Ward identity: Replacement:in the equation for the vertex Applications: Zero-dimensional impurity problems (C. Schönhammer, V. Meden, and T. Pruschke, 2005, 2008) Flow into symmetry-broken phases (W. Metzner, M. Salmhofer, C. Honerkamp, and R. Gersch, ) (A. Katanin, Phys. Rev. B 70, (2005)) improves fulfillment of Ward identities

16 MF: W. Hofstetter and D. Vollhardt, Ann. Phys. 7, 48 (1998) Half filling, non-nested Fermi surface QMC: H.Q. Lin and J.E. Hirsch, Phys. Rev. B 35, 3359 (1987). antiferromagnetic d-wave superconducting n=1 PIRG: T. Kashima and M. Imada Journ. Phys. Soc. Jpn 70, 3052 (2001). 48-patch fRG approach: MF

17 Angular dependence of the order parameter Hole-doped sc, A. A. Katanin and A. P. Kampf, Phys. Rev Electron-doped sc, A. A. Katanin, Phys. Rev J. Mesot et al., Phys. Rev. Lett. 83, 840 (1999). H. Matsui et al., Phys. Rev. Lett. 95, (2005). Pr 0.89 LaCe 0.11 CuO 4 Hot spot Max

18 Taking 6-point vertex into account  0.1t  0.1t U  2.5t A. Katanin, arXiv:2008

19 Scattering rates From spin-fermion theory: (R. Haslinger, Ar. Abanov, and A. Chubukov, 2001) FL NFL FL NFL  0.1t  0.1t Landau

Summary of the results of fRG approach  fRG allows for treating competing instabilities in fermionic systems and obtain information about  susceptibilities  phase diagrams  symmetries of the order parameter  quasiparticle characteristics  The ferro-, antiferromagnetic, and superconducting instabilities occur in different regions of phase diagram; the order parameter symmetry deviates from the standard s- and d-wave forms  The quasiparticle residues remain finite in the paramagnetic state; the quasiparticle damping shows a T 2 dependence at low T and T 1-   dependence  at higher T,  0  The truncation at 4-point vertex yields results compatible with more complicated truncations; the divergence of vertices and susceptibilities is however suppressed including the 6-point vertex

Detail description of quantum critical points Application to the localized Heisenberg (e.g. frustrated) magnets – bosonic (magnons) vs. fermionic (spinons) excitations Combination with other nonperturbative approaches Including long-range interactions, gauge fields etc. Future perspectives La 2 CuO 4 field-theor. RG + 1/N expansion, V. Yu. Irkhin, A. Katanin et al., PRB 1997  QPT QD QC RC  vs. similarity to CSB in QCD ? O(N) or O(N)/O(N-2) NL  -model Frustration and quantum criticality