Goal 1: Use properties from algebra Goal 2: Use properties of length and measure to justify segment and angle relationships CAS 3
Addition Property If a=b, then a+c=b+c Subtraction Property If a=b, then a+c=b+c
Multiplication Property If a=b, then ac=bc Division Property If a=b, then,
Reflexive Property For any real number a, a=a. Symmetric Property If a=b, then b=a
Transitive Property If a=b and b=c, then a=c. Substitution Property If a=b, then “a” can be substituted for “b” in any equation or expression.
a(b+c)=ab+ac Or a(b+c)=ab+ac
Reflexive Property, Symmetric Property, Transitive Property can be used with segment lengths and angle measurements.
Statements___Reasons 1. AC=B D 2. BC=BC 3. AC-BC=BC-BC 4. AB+BC=AC, BC+CD=BD 5. AB=AC-BC, CD=BD-BC 6. AB=CD ABCD