Random Variables Ch. 6. Flip a fair coin 4 times. List all the possible outcomes. Let X be the number of heads. A probability model describes the possible.

Slides:



Advertisements
Similar presentations
The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
Advertisements

6.1A Expected value of a discrete random variable
CHAPTER 6 Random Variables
CHAPTER 10: Introducing Probability
Stat 1510: Introducing Probability. Agenda 2  The Idea of Probability  Probability Models  Probability Rules  Finite and Discrete Probability Models.
Chapter 6: Random Variables
Chapter 4 Probability: The Study of Randomness
Chapter 6: Random Variables
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
6.1B Standard deviation of discrete random variables continuous random variables AP Statistics.
+ Section 6.1 & 6.2 Discrete Random Variables After this section, you should be able to… APPLY the concept of discrete random variables to a variety of.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.1 Discrete and Continuous.
Chapter 6 Random Variables
5.3 Random Variables  Random Variable  Discrete Random Variables  Continuous Random Variables  Normal Distributions as Probability Distributions 1.
6.1: Discrete and Continuous Random Variables. Section 6.1 Discrete & Continuous Random Variables After this section, you should be able to… APPLY the.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
CHAPTER 10: Introducing Probability ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Unit 3: Random Variables Unit 3.4 Discrete and Continuous Random Variables.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.1 Discrete and Continuous.
+ Chapter 6: Random Variables Section 6.2 Transforming and Combining Random Variables.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
Discrete and Continuous Random Variables. Yesterday we calculated the mean number of goals for a randomly selected team in a randomly selected game.
Probability Theory Modelling random phenomena. Permutations the number of ways that you can order n objects is: n! = n(n-1)(n-2)(n-3)…(3)(2)(1) Definition:
CHAPTER 10: Introducing Probability ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.1: Discrete and Continuous.
6.1 Discrete and Continuous Random Variables Objectives SWBAT: COMPUTE probabilities using the probability distribution of a discrete random variable.
7.2 Means & Variances of Random Variables AP Statistics.
+ Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Chapter 6- Random Variables
Chapter 6: Random Variables
Discrete and Continuous Random Variables
Discrete Distributions
Aim – How do we analyze a Discrete Random Variable?
CHAPTER 6 Random Variables
Chapter 6: Random Variables
Chapter 4 – Part 3.
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
6.1: Discrete and Continuous Random Variables
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Warmup Consider tossing a fair coin 3 times.
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
12/6/ Discrete and Continuous Random Variables.
Chapter 6: Random Variables
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 7: Random Variables
7.1: Discrete and Continuous Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
Section 1 – Discrete and Continuous Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Presentation transcript:

Random Variables Ch. 6

Flip a fair coin 4 times. List all the possible outcomes. Let X be the number of heads. A probability model describes the possible outcomes of a chance process and the likelihood that those outcomes will occur. A random variable takes numerical values that describe the outcomes of some chance process. The probability distribution of a random variable gives its possible values and their probabilities.

Discrete Random Variables There are two main types of random variables: discrete and continuous. If we can find a way to list all possible outcomes for a random variable and assign probabilities to each one, we have a discrete random variable. A discrete random variable X takes a fixed set of possible values with gaps between. The probability distribution of a discrete random variable X lists the values x i and their probabilities p i : Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … The probabilities p i must satisfy two requirements: 1.Every probability p i is a number between 0 and 1. 2.The sum of the probabilities is 1. To find the probability of any event, add the probabilities p i of the particular values x i that make up the event. Discrete Random Variables And Their Probability Distributions

Imagine selecting a U.S. high school student at random. Define the random variable X as the number of languages spoken by the randomly selected student. The table below gives the probability distribution. a.Show that it is a legitimate probability distribution. b.Make a histogram c.What is the probability that a randomly selected student speaks at least three languages? Language (X) Prob

Mean (Expected Value) of a Discrete Random Variable When analyzing discrete random variables, we follow the same strategy we used with quantitative data – describe the shape, center, and spread, and identify any outliers. The mean of any discrete random variable is an average of the possible outcomes, with each outcome weighted by its probability. Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … To find the mean (expected value) of X, multiply each possible value by its probability, then add all the products: Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … To find the mean (expected value) of X, multiply each possible value by its probability, then add all the products:

Using the number of languages spoken by U.S. high school students. Compute the mean of the random variable X and interpret this value in context. Lang. (X) Prob

Standard Deviation of a Discrete Random Variable Since we use the mean as the measure of center for a discrete random variable, we use the standard deviation as our measure of spread. The definition of the variance of a random variable is similar to the definition of the variance for a set of quantitative data. Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … and that µ X is the mean of X. The variance of X is Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … and that µ X is the mean of X. The variance of X is To get the standard deviation of a random variable, take the square root of the variance.

Using the number of languages spoken by U.S. high school students. Compute and interpret the standard deviation of the random variable X. Lang. (X) Prob

Continuous Random Variables Discrete random variables commonly arise from situations that involve counting something. Situations that involve measuring something often result in a continuous random variable. A continuous random variable X takes on all values in an interval of numbers. The probability distribution of X is described by a density curve. The probability of any event is the area under the density curve and above the values of X that make up the event. The probability model of a discrete random variable X assigns a probability between 0 and 1 to each possible value of X. A continuous random variable Y has infinitely many possible values. All continuous probability models assign probability 0 to every individual outcome. Only intervals of values have positive probability.

The weights of 3-year old females closely follow a Normal distribution with a mean of  = 30.7 pounds and a standard deviation  = 3.6 pounds. Randomly choose one 3-year old female and call her weight X. What is the probability that a randomly selected 3- year old female weighs at least 30 pounds?