Physics 1202: Lecture 16 Today’s Agenda Announcements: –Lectures posted on: www.phys.uconn.edu/~rcote/ www.phys.uconn.edu/~rcote/ –HW assignments, etc.

Slides:



Advertisements
Similar presentations
Each of the circuit elements will have a different ac current response to an applied ac voltage. We need to look at each of these elements. Resistor:
Advertisements

We have been using voltage sources that send out a current in a single direction called direct current (dc). Current does not have to flow continuously.
AC Circuits Physics 102 Professor Lee Carkner Lecture 24.
Induction1 Time Varying Circuits 2008 Induction2 A look into the future We have one more week after today (+ one day) We have one more week after today.
Alternating Current Circuits
Physics 1502: Lecture 23 Today’s Agenda Announcements: –RL - RV - RLC circuits Homework 06: due next Wednesday …Homework 06: due next Wednesday … Maxwell’s.
AC Circuits PH 203 Professor Lee Carkner Lecture 23.
Physics 1502: Lecture 24 Today’s Agenda Announcements: –Herschbach: Nobel Prize winner speaking Thursday »4:00PM in bio-physics building (BP-130 ?) Midterm.
Alternating Current Circuits
Physics 1502: Lecture 25 Today’s Agenda Announcements: Midterm 2: NOT Nov. 6 –Following week … Homework 07: due Friday next weekHomework 07: due Friday.
Copyright © 2009 Pearson Education, Inc. Lecture 10 – AC Circuits.
3/31/2020USF Physics 1011 Physics 101 AC Circuits.
chapter 33 Alternating Current Circuits
Physics 2112 Unit 20 Outline: Driven AC Circuits Phase of V and I
1 My Chapter 21 Lecture Outline. 2 Chapter 21: Alternating Currents Sinusoidal Voltages and Currents Capacitors, Resistors, and Inductors in AC Circuits.
Alternating Current Circuits
Electromagnetic Oscillations and Alternating Current
Alternating-Current Circuits Chapter 22. Section 22.2 AC Circuit Notation.
Ch – 35 AC Circuits.
ARRDEKTA INSTITUTE OF TECHNOLOGY GUIDED BY GUIDED BY Prof. R.H.Chaudhary Prof. R.H.Chaudhary Asst.prof in electrical Asst.prof in electrical Department.
Chapter 31 Electromagnetic Oscillations and Alternating Current Key contents LC oscillations, RLC circuits AC circuits (reactance, impedance, the power.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker.
Electromagnetic Oscillations and Alternating Current
Alternating Current Circuits Chapter 33 (continued)
1 Chapter An alternator 3 The Great Divide: 60 Hz vs 50 Hz  is an angular frequency.  =2  f where f is the frequency in Hertz (Hz) In the US.
Alternating Current Circuits
Sinusoidal Response of RC Circuits
Thursday, Dec. 1, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #23 Thursday, Dec. 1, 2011 Dr. Jaehoon Yu LR circuit LC.
Monday, Apr. 24, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #22 Monday, Apr. 24, 2006 Dr. Jaehoon Yu AC Circuit w/
Example A square coil of 100 loops is quickly pulled from the magnetic field as shown in 0.10 s. Calculate the change in flux. FBfinal =0 FBinitial =
Chapter 28: Alternating Current Phasors and Alternating Currents  Alternating current (AC current) Current which varies sinusoidally in time is called.
Chapter 24 Alternating-Current Circuits. Units of Chapter 24 Alternating Voltages and Currents Capacitors in AC Circuits RC Circuits Inductors in AC Circuits.
Class 34 Today we will: learn about inductors and inductance
L C   R Today... RLC circuits with a sinusoidal drive Phase difference between current & voltage for Resistors, Capacitors, and Inductors. Reactance.
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
L C   R     I m R I m  L I m  C  m Lecture 20.
Wednesday, Apr. 18, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #21 Wednesday, April 18, 2012 Dr. Jaehoon Yu AC Circuit.
P Class 26: Outline Hour 1: Driven Harmonic Motion (RLC) Hour 2: Experiment 11: Driven RLC Circuit.
CHAPTER 33) ALTERNATING-CURRENT CIRCUITS 33.1 : AC SOURCES AND PHASORS An ac circuit consists of circuit elements and a generator that provides athe alternating.
The Last Leg The Ups and Downs of Circuits Chapter 31.
The Ups and Downs of Circuits The End is Near! Quiz – Nov 18 th – Material since last quiz. (Induction) Exam #3 – Nov 23 rd – WEDNESDAY LAST CLASS –
Alternating Current (AC) R, L, C in AC circuits
Electromagnetic Oscillations and Alternating Current Chapter 33.
Physics 1202: Lecture 7 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
L C LC Circuits 0 0 t V V C L t t U B U E Today... Oscillating voltage and current Transformers Qualitative descriptions: LC circuits (ideal inductor)
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
Physics 1202: Lecture 8 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Physics 1202: Lecture 14 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Copyright R. Janow – Spring 2015 Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec The Series RLC.
Fig 33-CO These large transformers are used to increase the voltage at a power plant for distribution of energy by electrical transmission to the power.
Physics 1202: Lecture 17 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
Slide 1Fig 33-CO, p Slide 2Fig 33-1, p the basic principle of the ac generator is a direct consequence of Faraday’s law of induction. When.
Physics 212 Lecture 21, Slide 1 Physics 212 Lecture 21.
Chapter 31 Lecture 33: Alternating Current Circuits: II HW 11 (problems): 30.58, 30.65, 30.76, 31.12, 31.26, 31.46, 31.56, Due Friday, Dec 11. Final.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
Lesson 11 AC Circuits  AC Ciruits  Power  Maximum and Instantaneous voltage drops and current  Phasor Diagrams  Phase angle  RLC Circuits  Resonance.
Physics 1304: Lecture 18, Pg 1 AC Circuits  Physics 1304: Lecture 18, Pg 2 Lecture Outline l Driven Series LCR Circuit: General solution Resonance condition.
Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec The Series RLC Circuit. Amplitude and Phase.
Physics 1202: Lecture 15 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Wednesday, Apr. 19, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #21 Wednesday, Apr. 19, 2006 Dr. Jaehoon Yu Energy.
Copyright R. Janow – Fall 2015 Physics Electricity and Magnetism Lecture 14E - AC Circuits & Resonance I – Series LCR Y&F Chapter 31, Sec. 3 – 8.
Copyright R. Janow – Spring 2016 Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec Phasor Diagrams.
Chapter 33 Alternating Current Circuits. Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating.
Physics 213 General Physics Lecture Last Meeting: Self Inductance, RL Circuits, Energy Stored Today: Finish RL Circuits and Energy Stored. Electric.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
PHYS 1444 – Section 501 Lecture #22
Physics 1202: Lecture 11 Today’s Agenda
LC Oscillations L C I Kirchoff’s loop rule 11/12/2018.
Physics 1202: Lecture 12 Today’s Agenda
PHYS 1444 – Section 003 Lecture #21
Presentation transcript:

Physics 1202: Lecture 16 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc. Homework #5:Homework #5: –Due next Friday Midterm 1: –Answers today –New average = 63%

L C   R 

 R Circuit We begin by considering simple circuits with one element (R,C, or L) in addition to the driving emf. Begin with R: Loop eqn gives:  Voltage across R in phase with current through R   i R R Note: this is always, always, true… always. 0 t x mm  m 0 0 t  m / R  m / R 0

RMS Values Average values for I,V are not that helpful (they are zero). Thus we introduce the idea of the Root of the Mean Squared. In general, So Average Power is,

 C Circuit (… calculus !) Now consider C: Loop eqn gives:    C  Voltage across C lags current through C by one-quarter cycle (90  ). Is this always true? YES 0 t x mm  m 0 t 0 0  C  m  C  m

Lecture 16, ACT 1 A circuit consisting of capacitor C and voltage source  is constructed as shown. The graph shows the voltage presented to the capacitor as a function of time. –Which of the following graphs best represents the time dependence of the current i in the circuit? (a) (b) (c) i t i t t i  t

 L Circuit (… calculus !) Now consider L: Loop eqn gives:   Voltage across L leads current through L by one- quarter cycle (90  ).   L Yes, yes, but how to remember? 0 t x mm  m 0 t x  m  L  m  L 0 0

Phasors A phasor is a vector whose magnitude is the maximum value of a quantity (eg V or I) and which rotates counterclockwise in a 2-d plane with angular velocity . Recall uniform circular motion: The projections of r (on the vertical y axis) execute sinusoidal oscillation.    R: V in phase with i C: V lags i by 90  L: V leads i by 90   x y y

0 i 0 i Phasors for L,C,R i tt  i tt  i tt   Suppose: 0 i

A series LCR circuit driven by emf  =  0 sin  t produces a current i=i m sin(  t-  ). The phasor diagram for the current at t=0 is shown to the right. –At which of the following times is V C, the magnitude of the voltage across the capacitor, a maximum? Lecture 16, ACT 2 i  t=0 (a) (b) (c) i t=0 i t=t b i t=t c

Series LCR AC Circuit Consider the circuit shown here: the loop equation gives: Here all unknowns, (i m,  ), must be found from the loop eqn; the initial conditions have been taken care of by taking the emf to be:  m sin  t. To solve this problem graphically, first write down expressions for the voltages across R,C, and L and then plot the appropriate phasor diagram. L C   R Assume a solution of the form:  C = -Q/C  L = -L  I /  t  R = -RI

Phasors: LCR Assume: From these equations, we can draw the phasor diagram to the right. L C   R  This picture corresponds to a snapshot at t=0. The projections of these phasors along the vertical axis are the actual values of the voltages at the given time. Given:   imim 

Phasors: LCR The phasor diagram has been relabeled in terms of the reactances defined from:  L C   R The unknowns (i m,  ) can now be solved for graphically since the vector sum of the voltages V L + V C + V R must sum to the driving emf .

Phasors:LCR  

Phasors:Tips This phasor diagram was drawn as a snapshot of time t=0 with the voltages being given as the projections along the y-axis. y x  imRimR imXLimXL imXCimXC mm “Full Phasor Diagram” From this diagram, we can also create a triangle which allows us to calculate the impedance Z: Sometimes, in working problems, it is easier to draw the diagram at a time when the current is along the x-axis (when i=0). “ Impedance Triangle” Z |  R | X L -X C |

Resonance For fixed R,C,L the current i m will be a maximum at the resonant frequency  0 which makes the impedance Z purely resistive. the frequency at which this condition is obtained is given from:  Note that this resonant frequency is identical to the natural frequency of the LC circuit by itself! At this frequency, the current and the driving voltage are in phase! ie: reaches a maximum when: X L =X C

Resonance The current in an LCR circuit depends on the values of the elements and on the driving frequency through the relation Suppose you plot the current versus , the source voltage frequency, you would get: “ Impedance Triangle” Z |  R | X L -X C | 12 x imim 0 0  o  R=R o  m / R 0 R=2R o

Power in LCR Circuit The power supplied by the emf in a series LCR circuit depends on the frequency . It will turn out that the maximum power is supplied at the resonant frequency  0. The instantaneous power (for some frequency,  ) delivered at time t is given by: The most useful quantity to consider here is not the instantaneous power but rather the average power delivered in a cycle. To evaluate the average on the right, we first expand the sin(  t-  ) term. Remember what this stands for

Power in LCR Circuit Expanding, Taking the averages, Generally: sin 2  t tt 0  0 +1 Putting it all back together again, 0 1/2 (Integral of Product of even and odd function = 0) sin  tcos  t tt 0  0 +1

Power in LCR Circuit The power can be expressed in term of i max: Power delivered depends on the phase,  the  “power factor” phase depends on the values of L, C, R, and  This result is often rewritten in terms of rms values:  

Fields from Circuits? We have been focusing on what happens within the circuits we have been studying (eg currents, voltages, etc.) What’s happening outside the circuits?? –We know that: »charges create electric fields and »moving charges (currents) create magnetic fields. –Can we detect these fields? –Demos: » We saw a bulb connected to a loop glow when the loop came near a solenoidal magnet. »Light spreads out and makes interference patterns. Do we understand this?