Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P.

Slides:



Advertisements
Similar presentations
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Advertisements

Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko.
Face Detection & Synthesis using 3D Models & OpenCV Learning Bit by Bit Don Miller ITP, Spring 2010.
F ACE TRACKING EE 7700 Name: Jing Chen Shaoming Chen.
AdaBoost & Its Applications
Face detection Many slides adapted from P. Viola.
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei Li,
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
The Viola/Jones Face Detector Prepared with figures taken from “Robust real-time object detection” CRL 2001/01, February 2001.
The Viola/Jones Face Detector (2001)
HCI Final Project Robust Real Time Face Detection Paul Viola, Michael Jones, Robust Real-Time Face Detetion, International Journal of Computer Vision,
Rapid Object Detection using a Boosted Cascade of Simple Features
Generic Object Detection using Feature Maps Oscar Danielsson Stefan Carlsson
Robust Real-time Object Detection by Paul Viola and Michael Jones ICCV 2001 Workshop on Statistical and Computation Theories of Vision Presentation by.
Face detection and recognition Many slides adapted from K. Grauman and D. Lowe.
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
Adaboost and its application
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
Robust Real-Time Object Detection Paul Viola & Michael Jones.
Viola and Jones Object Detector Ruxandra Paun EE/CS/CNS Presentation
Foundations of Computer Vision Rapid object / face detection using a Boosted Cascade of Simple features Presented by Christos Stoilas Rapid object / face.
Face Detection CSE 576. Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
FACE DETECTION AND RECOGNITION By: Paranjith Singh Lohiya Ravi Babu Lavu.
Vision-Based Biometric Authentication System by Padraic o hIarnain Final Year Project Presentation.
Face Detection using the Viola-Jones Method
A Tutorial on Object Detection Using OpenCV
Using Statistic-based Boosting Cascade Weilong Yang, Wei Song, Zhigang Qiao, Michael Fang 1.
Detecting Pedestrians Using Patterns of Motion and Appearance Paul Viola Microsoft Research Irfan Ullah Dept. of Info. and Comm. Engr. Myongji University.
Rectangle Filters and AdaBoost CSE 6367 – Computer Vision Vassilis Athitsos University of Texas at Arlington.
Machine Learning – Linear Classifiers and Boosting CS 271: Fall 2007 Instructor: Padhraic Smyth.
Window-based models for generic object detection Mei-Chen Yeh 04/24/2012.
Lecture 29: Face Detection Revisited CS4670 / 5670: Computer Vision Noah Snavely.
Face detection Slides adapted Grauman & Liebe’s tutorial
Automatic Image Anonymizer Alex Brettingen James Esposito.
DIEGO AGUIRRE COMPUTER VISION INTRODUCTION 1. QUESTION What is Computer Vision? 2.
Robust Real-time Face Detection by Paul Viola and Michael Jones, 2002 Presentation by Kostantina Palla & Alfredo Kalaitzis School of Informatics University.
ECE738 Advanced Image Processing Face Detection IEEE Trans. PAMI, July 1997.
Tony Jebara, Columbia University Advanced Machine Learning & Perception Instructor: Tony Jebara.
Face Detection Ying Wu Electrical and Computer Engineering Northwestern University, Evanston, IL
Adaboost and Object Detection Xu and Arun. Principle of Adaboost Three cobblers with their wits combined equal Zhuge Liang the master mind. Failure is.
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
The Viola/Jones Face Detector A “paradigmatic” method for real-time object detection Training is slow, but detection is very fast Key ideas Integral images.
Bibek Jang Karki. Outline Integral Image Representation of image in summation format AdaBoost Ranking of features Combining best features to form strong.
FACE DETECTION : AMIT BHAMARE. WHAT IS FACE DETECTION ? Face detection is computer based technology which detect the face in digital image. Trivial task.
CS-498 Computer Vision Week 9, Class 2 and Week 10, Class 1
Notes on HW 1 grading I gave full credit as long as you gave a description, confusion matrix, and working code Many people’s descriptions were quite short.
A Brief Introduction on Face Detection Mei-Chen Yeh 04/06/2010 P. Viola and M. J. Jones, Robust Real-Time Face Detection, IJCV 2004.
Machine Learning – Classifiers and Boosting Reading Ch , (3 rd ed.) Ch , but not the part of 20.3 after “Learning Bayesian.
Face detection Many slides adapted from P. Viola.
Face Detection and Recognition Reading: Chapter and, optionally, “Face Recognition using Eigenfaces” by M. Turk and A. Pentland.
AdaBoost Algorithm and its Application on Object Detection Fayin Li.
Recognition Part II: Face Detection via AdaBoost Linda Shapiro CSE
1 Munther Abualkibash University of Bridgeport, CT.
Reading: R. Schapire, A brief introduction to boosting
2. Skin - color filtering.
Cascade for Fast Detection
License Plate Detection
Machine Learning – Linear Classifiers and Boosting
Session 7: Face Detection (cont.)
Lit part of blue dress and shadowed part of white dress are the same color
High-Level Vision Face Detection.
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei.
Face Detection via AdaBoost
ADABOOST(Adaptative Boosting)
Machine Learning – Classifiers and Boosting
Adaboost for faces. Material
A Tutorial on Object Detection Using OpenCV
Lecture 29: Face Detection Revisited
Presentation transcript:

Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P. Viola and M. Jones, International Journal of Computer Vision, 2004

Viola-Jones Face Detection Algorithm Overview : –Viola Jones technique overview –Features –Integral Images –Feature Extraction –Weak Classifiers –Boosting and classifier evaluation –Cascade of boosted classifiers –Example Results

Viola Jones Technique Overview Three major contributions/phases of the algorithm : –Feature extraction –Learning using boosting and decision stumps –Multi-scale detection algorithm Feature extraction and feature evaluation. –Rectangular features are used, with a new image representation their calculation is very fast. Classifier learning using a method called boosting A combination of simple classifiers is very effective

Features Four basic types. –They are easy to calculate. –The white areas are subtracted from the black ones. –A special representation of the sample called the integral image makes feature extraction faster.

Integral images Summed area tables A representation that means any rectangle’s values can be calculated in four accesses of the integral image.

Fast Computation of Pixel Sums

Feature Extraction Features are extracted from sub windows of a sample image. –The base size for a sub window is 24 by 24 pixels. –Each of the four feature types are scaled and shifted across all possible combinations In a 24 pixel by 24 pixel sub window there are ~160,000 possible features to be calculated.

Learning with many features We have 160,000 features – how can we learn a classifier with only a few hundred training examples without overfitting? Idea: –Learn a single very simple classifier (a “weak classifier”) –Classify the data –Look at where it makes errors –Reweight the data so that the inputs where we made errors get higher weight in the learning process –Now learn a 2 nd simple classifier on the weighted data –Combine the 1 st and 2 nd classifier and weight the data according to where they make errors –Learn a 3 rd classifier on the weighted data –… and so on until we learn T simple classifiers –Final classifier is the combination of all T classifiers –This procedure is called “Boosting” – works very well in practice.

“Decision Stumps” Decision stumps = decision tree with only a single root node –Certainly a very weak learner! –Say the attributes are real-valued –Decision stump algorithm looks at all possible thresholds for each attribute –Selects the one with the max information gain –Resulting classifier is a simple threshold on a single feature Outputs a +1 if the attribute is above a certain threshold Outputs a -1 if the attribute is below the threshold –Note: can restrict the search for to the n-1 “midpoint” locations between a sorted list of attribute values for each feature. So complexity is n log n per attribute. –Note this is exactly equivalent to learning a perceptron with a single intercept term (so we could also learn these stumps via gradient descent and mean squared error)

Boosting Example

First classifier

First 2 classifiers

First 3 classifiers

Final Classifier learned by Boosting

Boosting with Decision Stumps Viola-Jones algorithm –With K attributes (e.g., K = 160,000) we have 160,000 different decision stumps to choose from –At each stage of boosting given reweighted data from previous stage Train all K (160,000) single-feature perceptrons Select the single best classifier at this stage Combine it with the other previously selected classifiers Reweight the data Learn all K classifiers again, select the best, combine, reweight Repeat until you have T classifiers selected –Very computationally intensive Learning K decision stumps T times E.g., K = 160,000 and T = 1000

How is classifier combining done? At each stage we select the best classifier on the current iteration and combine it with the set of classifiers learned so far How are the classifiers combined? –Take the weight*feature for each classifier, sum these up, and compare to a threshold (very simple) –Boosting algorithm automatically provides the appropriate weight for each classifier and the threshold –This version of boosting is known as the AdaBoost algorithm –Some nice mathematical theory shows that it is in fact a very powerful machine learning technique

Reduction in Error as Boosting adds Classifiers

Useful Features Learned by Boosting

A Cascade of Classifiers

Detection in Real Images Basic classifier operates on 24 x 24 subwindows Scaling: –Scale the detector (rather than the images) –Features can easily be evaluated at any scale –Scale by factors of 1.25 Location: –Move detector around the image (e.g., 1 pixel increments) Final Detections –A real face may result in multiple nearby detections –Postprocess detected subwindows to combine overlapping detections into a single detection

Training Examples of 24x24 images with faces

Small set of 111 Training Images

Sample results using the Viola-Jones Detector Notice detection at multiple scales

More Detection Examples

Practical implementation Details discussed in Viola-Jones paper Training time = weeks (with 5k faces and 9.5k non-faces) Final detector has 38 layers in the cascade, 6060 features 700 Mhz processor: –Can process a 384 x 288 image in seconds (in 2003 when paper was written)