Radiance Data Assimilation in WRF-Var

Slides:



Advertisements
Similar presentations
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Advertisements

WRF Modeling System V2.0 Overview
© The Aerospace Corporation 2014 Observation Impact on WRF Model Forecast Accuracy over Southwest Asia Michael D. McAtee Environmental Satellite Systems.
Characterization of ATMS Bias Using GPSRO Observations Lin Lin 1,2, Fuzhong Weng 2 and Xiaolei Zou 3 1 Earth Resources Technology, Inc.
2. Description of MIIDAPS 1. Introduction A Generalized Approach to Microwave Satellite Data Assimilation Quality Control and Preprocessing Here, we present.
1 Met Office, UK 2 Japan Meteorological Agency 3 Bureau of Meteorology, Australia Assimilation of data from AIRS for improved numerical weather prediction.
Satellite Radiance Assimilation John C. Derber Environmental Modeling Center NCEP/NWS/NOAA With input from: Many others.
Slide 1 IPWG, Beijing, October 2008 Slide 1 Assimilation of rain and cloud-affected microwave radiances at ECMWF Alan Geer, Peter Bauer, Philippe.
Satellite SST Radiance Assimilation and SST Data Impacts James Cummings Naval Research Laboratory Monterey, CA Sea Surface Temperature Science.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
1 ATOVS and SSM/I assimilation at the Met Office Stephen English, Dave Jones, Andrew Smith, Fiona Hilton and Keith Whyte.
Numerical Weather Prediction Division The usage of the ATOVS data in the Korea Meteorological Administration (KMA) Sang-Won Joo Korea Meteorological Administration.
Data assimilation of polar orbiting satellites at ECMWF
Recent activities on utilization of microwave imager data in the JMA NWP system - Preparation for AMSR2 data assimilation - Masahiro Kazumori Japan Meteorological.
UKmet February Hybrid Ensemble-Variational Data Assimilation Development A partnership to develop and implement a hybrid 3D-VAR system –Joint venture.
Kathryn M. Newman 1,2 and Ming Hu 1,3 GSI Fundamentals (4): Applications 1 Developmental Testbed Center (DTC) 2 National Center for Atmospheric Research.
Donald Stark National Center for Atmospheric Research (NCAR) The Developmental Testbed Center (DTC) Wednesday 29 June, 2011 GSI Fundamentals (1): Setup.
Advances in the use of observations in the ALADIN/HU 3D-Var system Roger RANDRIAMAMPIANINA, Regina SZOTÁK and Gabriella Csima Hungarian Meteorological.
MIIDAPS Status – 13 th JCSDA Technical Review and Science Workshop, College Park, MD Quality Control-Consistent algorithm for all sensors to determine.
00/XXXX1 RTTOV-7: A satellite radiance simulator for the new millennium What is RTTOV Latest developments from RTTOV-6 to 7 Validation results for RTTOV-7.
1 Detection and Determination of Channel Frequency Shift in AMSU-A Observations Cheng-Zhi Zou and Wenhui Wang IGARSS 2011, Vancouver, Canada, July 24-28,
Slide 1 EUMETSAT Fellow Day, 9 March 2015 Observation Errors for AMSU-A and a first look at the FY-3C MWHS-2 instrument Heather Lawrence, second-year EUMETSAT.
Satellite Bias Correction for CFSRR Haixia Liu, Russ Treadon, Robert Kistler, John Derber, Suru Saha and Hua-lu Pan Nov. 7, 2007 with input from Jack Woollen,
A NON-RAINING 1DVAR RETRIEVAL FOR GMI DAVID DUNCAN JCSDA COLLOQUIUM 7/30/15.
Kathryn Newman Ming Hu, and Chunhua Zhou EnKF Fundamentals (2b): Applications Developmental Testbed Center (DTC) 2015 EnKF Community Tutorial August 13-14,
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 POES Microwave Products Presented.
11 th JCSDA Science Workshop on Satellite Data Assimilation Latest Developments on the Assimilation of Cloud-Affected Satellite Observations Tom Auligné.
HDF-EOS at NOAA/NESDIS NOAA / NESDIS / ORA orbit-net.nesdis.noaa.gov/arad2/MSPPS Huan Meng, Doug Moore, Limin Zhao, Ralph Ferraro NOAA / NESDIS.
P1.85 DEVELOPMENT OF SIMULATED GOES PRODUCTS FOR GFS AND NAM Hui-Ya Chuang and Brad Ferrier Environmental Modeling Center, NCEP, Washington DC Introduction.
Assimilation of Satellite Radiances into LM with 1D-Var and Nudging Reinhold, Christoph, Francesca, Blazej, Piotr, Iulia, Michael, Vadim DWD, ARPA-SIM,
USE OF AIRS/AMSU DATA FOR WEATHER AND CLIMATE RESEARCH Joel Susskind University of Maryland May 12, 2005.
1 Radiance Data Assimilation in WRFDA Zhiquan Liu NCAR/NESL/MMM WRFDA Tutorial, July 2013.
Hyperspectral Infrared Alone Cloudy Sounding Algorithm Development Objective and Summary To prepare for the synergistic use of data from the high-temporal.
AIRS Radiance and Geophysical Products: Methodology and Validation Mitch Goldberg, Larry McMillin NOAA/NESDIS Walter Wolf, Lihang Zhou, Yanni Qu and M.
Jinlong Li 1, Jun Li 1, Christopher C. Schmidt 1, Timothy J. Schmit 2, and W. Paul Menzel 2 1 Cooperative Institute for Meteorological Satellite Studies.
A Generalized Approach to Microwave Satellite Data Assimilation Quality Control and Preprocessing Kevin Garrett 1 and Sid Boukabara 2 11 th JCSDA Science.
July, 2009 WRF-Var Tutorial Syed RH Rizvi 0 WRFDA Background Error Estimation Syed RH Rizvi National Center For Atmospheric Research NCAR/ESSL/MMM, Boulder,
25 th EWGLAM/10 th SRNWP Lisbon, Portugal 6-9 October 2003 Use of satellite data at Météo-France Élisabeth Gérard Météo-France/CNRM/GMAP/OBS, Toulouse,
1 Bias correction in data assimilation Dick Dee ECMWF Meteorological Training Course Data Assimilation and Use of Satellite Data 11 May 2011.
The Infrastructure, Design and Applications of Observing System Simulation Experiments at NASA's Global Modeling and Assimilation Office By Ronald M. Errico.
The Hyperspectral Environmental Suite (HES) and Advanced Baseline Imager (ABI) will be flown on the next generation of NOAA Geostationary Operational Environmental.
MIIDAPS Application to GSI for QC and Dynamic Emissivity in Passive Microwave Data Assimilation.
NCAR April 1 st 2003 Mesoscale and Microscale Meteorology Data Assimilation in AMPS Dale Barker S. Rizvi, and M. Duda MMM Division, NCAR
0 0 July, 2009 WRF-Var Tutorial Syed RH Rizvi WRFDA Analysis/Forecast Verification Syed RH Rizvi National Center For Atmospheric Research NCAR/ESSL/MMM,
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
Use of GPM GMI at the Joint Center for Satellite Data Assimilation.
November 21 st 2002 Summer 2009 WRFDA Tutorial WRF-Var System Overview Xin Zhang, Yong-Run Guo, Syed R-H Rizvi, and Michael Duda.
Overview of Community Radiative Transfer Model (CRTM) Fuzhong Weng, Yong Chen and Min-Jeong Kim NOAA/NESDIS/Center for Satellite Applications and Research.
Infrared Sounding Data in the GMAO Data Assimilation System JCSDA Infrared Sounding Working Group (ISWG) 30 January 2009.
NCEP Assessment of ATMS Radiances Andrew Collard 1, John Derber 2 and Russ Treadon 2 1 IMSG at NOAA/NCEP/EMC 2 NOAA/NCEP/EMC 1NPP ATMS SDR Product Review13th.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
The assimilation of satellite radiances in LM F. Di Giuseppe, B. Krzeminski,R. Hess, C. Shraff (1) ARPA-SIM Italy (2) IMGW,Poland (3)DWD, Germany.
Radiance Simulation System for OSSE  Objectives  To evaluate the impact of observing system data under the context of numerical weather analysis and.
A Physically-based Rainfall Rate Algorithm for the Global Precipitation Mission Kevin Garrett 1, Leslie Moy 1, Flavio Iturbide-Sanchez 1, and Sid-Ahmed.
NOAA Near Real-Time AIRS Processing and Distribution System Walter Wolf Mitch Goldberg Lihang Zhou NESDIS/ORA/CRAD.
© Crown copyright Met Office Assimilating infra-red sounder data over land John Eyre for Ed Pavelin Met Office, UK Acknowledgements: Brett Candy DAOS-WG,
Recent Developments in assimilation of ATOVS at JMA 1.Introduction 2.1DVar preprocessor 3.Simple test for 3DVar radiance assimilation 4.Cycle experiments.
Assimilation of GPM satellite radiance in improving hurricane forecasting Zhaoxia Pu and ChauLam (Chris) Yu Department of Atmospheric Sciences University.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
What is atmospheric radiative transfer?
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
GSICS Microwave Sub Group Meeting
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
MO – Design & Plans UERRA GA 2016 Peter Jermey
Vicarious calibration by liquid cloud target
Cristina Lupu, Niels Bormann, Reima Eresmaa
Initialization of Numerical Forecast Models with Satellite data
Infrared Satellite Data Assimilation at NCAR
Status of the Regional OSSE for Space-Based LIDAR Winds – Feb01
Presentation transcript:

Radiance Data Assimilation in WRF-Var Please see other related detailed tutorial presentations available at http://www.mmm.ucar.edu/wrf/users/tutorial/tutorial_presentation.htm Satellite Data http://www.mmm.ucar.edu/wrf/users/tutorial/200807/VAR/WRF_Tutorial_Radiances.pdf

Radiance codes are NOT included in the current V3.0.1.1 release. Radiance codes are expected to be released in the next coming release (April 2009). da/da_radiance] % ls adm_ehv2pem.inc da_predictor_rttov.inc da_sort_rad.inc da_allocate_rad_iv.inc da_print_stats_rad.inc da_transform_xtoy_crtm.inc da_ao_stats_rad.inc da_qc_airs.inc da_transform_xtoy_crtm_adj.inc da_biascorr.inc da_qc_amsua.inc da_transform_xtoy_rttov.inc da_biasprep.inc da_qc_amsub.inc da_transform_xtoy_rttov_adj.inc da_calculate_grady_rad.inc da_qc_crtm.inc da_write_biasprep.inc da_cld_eff_radius.inc da_qc_hirs.inc da_write_filtered_rad.inc da_cloud_detect_airs.inc da_qc_mhs.inc da_write_iv_rad_ascii.inc da_cloud_sim_airs.inc da_qc_rad.inc da_write_oa_rad_ascii.inc da_crtm.f90 da_qc_ssmis.inc ehv2pem.inc da_crtm_ad.inc da_radiance.f90 emiss_ssmi.inc da_crtm_direct.inc da_radiance1.f90 gsi_constants.f90 da_crtm_init.inc da_radiance_init.inc gsi_emiss.inc da_crtm_k.inc da_read_biascoef.inc gsi_kinds.f90 da_crtm_sensor_descriptor.inc da_read_filtered_rad.inc gsi_thinning.f90 da_crtm_tl.inc da_read_kma1dvar.inc iceem_amsu.inc da_detsurtyp.inc da_read_obs_bufrairs.inc init_constants_derived.inc da_get_innov_vector_crtm.inc da_read_obs_bufrssmis.inc inria_n2qn1.inc da_get_innov_vector_crtmk.inc da_read_obs_bufrtovs.inc landem.inc da_get_innov_vector_radiance.inc da_read_pseudo_rad.inc module_radiance.f90 da_get_innov_vector_rttov.inc da_residual_rad.inc ossmem.inc da_get_julian_time.inc da_rttov.f90 seaem.inc da_get_time_slots.inc da_rttov_ad.inc siem_ats.inc da_initialize_rad_iv.inc da_rttov_direct.inc siem_bts.inc da_jo_and_grady_rad.inc da_rttov_init.inc siem_interpolate.inc da_oi_stats_rad.inc da_rttov_tl.inc snwem_amsu.inc da_predictor_crtm.inc da_setup_radiance_structures.inc

Basic Concepts: Radiative Transfer + + Surface Cloud/rain TOA radiance at frequency  Planck function Atmospheric absorption Emission/reflection Diffusion/scattering Temperature information derived from well-mixed absorbents (CO2, …) Channels sensitive to Humidity, Ozone, … Surface channels: “window” parts of spectrum AMSUA

Basic Concepts: Radiative Transfer + + Surface Cloud/rain TOA radiance at frequency  Planck function Atmospheric absorption Emission/reflection Diffusion/scattering CRTM, RTTOV, … T, Q, O3, … Forward model L() RT Inversion Regression, neural network, 1D-Var

Practical issues: Quality Control Specific QC for each sensor AMSU-A, AMSU-B, MHS, SSMIS, AIRS Pixel-level QC Reject limb observations Reject pixels over land and sea-ice Cloud/Precipitation detection Synergy with imager (AIRS/VIS-NIR) Channel-level QC Gross check (innovations <15 K) First-guess check (innovations < 3o). Observation error tuning Error factor tuned from objective method (Desrozier and Ivanov, 2001) AMSU-B 89GHz-150GHz Tb < 3K Katrina Location (2005/08/26/06Z) CLWP(mm) from Guess <0.2mm

Practical issues: Bias Correction Predictors: Offset 1000-300mb thickness 200-50mb thickness Surface skin temperature Total column water vapor Scan Parameters Modeling of errors in satellite radiances: Air Mass Bias + Scan Bias Scan Bias = d(limb) - d(nadir) d(.) is departure (omb or oma) This is relative bias between limb and nadir

Practical issues: Variational Bias Correction Predictors: Offset 1000-300mb thickness 200-50mb thickness Surface skin temperature Total column water vapor Scan Parameters Modeling of errors in satellite radiances: Bias parameters can be estimated within the variational assimilation, jointly with the atmospheric model state (Derber and Wu 1998) (Dee 2005) (Auligné et al. 2007) Inclusion of the bias parameters in the control vector : xT  [x, ]T Jb: background term for x Jo: corrected observation term «Optimal » bias correction considering all available information J: background term for 

Practical issues: Thinning No Thinning 120km Thinning Mesh

Data Ingest (sources, instruments, Tb, Ta) Radiative transfer model Channel selection Bias correction Off-line bias correction statistics Variational bias correction Diagnostics and monitoring

Data Ingest NCEP global BUFR radiance data HIRS from NOAA16, 17, 18 (Total: 14 sensors from 6 satellites) HIRS from NOAA16, 17, 18 AMSU-A from NOAA15, 16, 18, EOS-Aqua, METOP-2 AMSU-B from NOAA15, 16, 17 MHS from NOAA18, METOP-2 AIRS from EOS-Aqua NCAR processed AMSU-A, AMSU-B, MHS BUFR files. NRL/AFWA/NESDIS produced DMSP-16 SSMI/S BUFR radiance data.

Data Processing Raw orbit-by-orbit level-1B radiance in binary format (including coefficients for radiance to temperature conversion) from NESDIS [ --> antenna temperature ] --> brightness temperature Concatenate orbit-by-orbit files within desired time window into one BUFR file Remove duplicate data

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.${yyyymmddhh} NCEP BUFR ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.${yyyymmddhh} NCEP naming convention WRF-Var naming convention gdas1.t00z.1bamua.tm00.bufr_d gdas1.t00z.1bamub.tm00.bufr_d gdas1.t00z.1bhrs3.tm00.bufr_d gdas1.t00z.1bhrs4.tm00.bufr_d gdas1.t00z.1bmhs.tm00.bufr_d gdas1.t00z.airsev.tm00.bufr_d gdas1.t00z.airs.tm00.bufr_d amsua.bufr amsub.bufr hirs3.bufr hirs4.bufr mhs.bufr airs.bufr ssmis.bufr Direct input to WRF-Var, no pre-processing required. Quality control, thinning, time and domain check, bias correction are done inside WRF-Var Namelist switches to decide if reading the data or not Use_amsuaobs Use_amsubobs Use_hirs3obs Use_hirs4obs Use_mhsobs Use_airsobs Use_eos_amsuaobs Use_ssmisobs

Radiative Transfer Model For all the satellite sensors supported, given an atmospheric profile of temperature, water vapour and optionally ozone and carbon dioxide together with satellite zenith angle and surface temperature, pressure and optionally surface emissivity, RTTOV will compute the top of atmosphere radiances in each of the channels of the sensor being simulated. From http://www.metoffice.gov.uk/research/interproj/nwpsaf/rtm/rttov8_description.html

Radiative Transfer Model CRTM (Community Radiative Transfer Model) JCSDA (Joint Center for Satellite Data Assimilation) ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/ Latest released version: CRTM REL-1.2_beta, September 2008 Version used in WRF-Var: CRTM REL-1.1 Documentation still under development RTTOV (Radiative Transfer for TOVS) EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) http://www.metoffice.gov.uk/research/interproj/nwpsaf/rtm/index.html Latest released version: RTTOV_9_2, July 2008 Version used in WRF-Var: RTTOV_8_7 (with a small bug fix) in WRF-Var applications, CRTM and RTTOV produce similar results while RTTOV is much faster than CRTM

Channel selection Window Channels (1~3,15) not used Channels 10~14 above model top removed Ch4: 700mb Ch5: 500~700mb Ch6: 400~500mb Ch7: 200~300mb Sounding Channels (5~9) sensitive to Temperature. Ch8: 200mb Ch9: 100mb Ch10: 50mb Ch11: 30mb

Channel selection metop-2-mhs.info WRFDA/var/run/radiance_info>ls -l total 160 -rw-r--r-- 1 hclin users 1588 Aug 22 17:01 dmsp-16-ssmis.info -rw-r--r-- 1 hclin users 17790 Aug 22 17:01 eos-2-airs.info -rw-r--r-- 1 hclin users 1033 Aug 22 17:01 eos-2-amsua.info -rw-r--r-- 1 hclin users 1036 Aug 22 17:01 metop-2-amsua.info -rw-r--r-- 1 hclin users 391 Aug 22 17:01 metop-2-mhs.info -rw-r--r-- 1 hclin users 1021 Aug 22 17:01 noaa-15-amsua.info -rw-r--r-- 1 hclin users 391 Aug 22 17:01 noaa-15-amsub.info -rw-r--r-- 1 hclin users 1277 Aug 22 17:01 noaa-15-hirs.info -rw-r--r-- 1 hclin users 1021 Aug 22 17:01 noaa-16-amsua.info -rw-r--r-- 1 hclin users 391 Aug 22 17:01 noaa-16-amsub.info -rw-r--r-- 1 hclin users 1275 Aug 22 17:01 noaa-16-hirs.info -rw-r--r-- 1 hclin users 391 Aug 22 17:01 noaa-17-amsub.info -rw-r--r-- 1 hclin users 1277 Aug 22 17:01 noaa-17-hirs.info -rw-r--r-- 1 hclin users 1036 Aug 22 17:01 noaa-18-amsua.info -rw-r--r-- 1 hclin users 1286 Aug 22 17:01 noaa-18-hirs.info -rw-r--r-- 1 hclin users 391 Aug 22 17:01 noaa-18-mhs.info metop-2-mhs.info sensor channel IR/MW use idum varch polarisation(0:vertical;1:horizontal) 203 1 1 -1 0 0.2500000000E+01 0.0000000000E+00 203 2 1 -1 0 0.2500000000E+01 0.0000000000E+00 203 3 1 1 0 0.2500000000E+01 0.1000000000E+01 203 4 1 1 0 0.2000000000E+01 0.1000000000E+01 203 5 1 1 0 0.2000000000E+01 0.0000000000E+00

Setup and run - with radiances To run WRF-Var, first create a working directory, for example, WRFDA/var/test, then follow the steps below: cd WRFDA/var/test (go to the working directory) ln -sf WRFDA/run/LANDUSE.TBL ./LANDUSE.TBL ln -sf $DAT_DIR/rc/2007010200/wrfinput_d01 ./fg (link first guess file as fg) ln -sf WRFDA/var/obsproc/obs_gts_2007-01-02_00:00:00.3DVAR ./ob.ascii (link OBSPROC processed observation file as ob.ascii) ln -sf $DAT_DIR/be/be.dat ./be.dat (link background error statistics as be.dat) ln -sf WRFDA/var/da/da_wrfvar.exe ./da_wrfvar.exe (link executable) ln -sf $DAT_DIR/2007010200/gdas1.t00z.1bamua.tm00.bufr_d ./amsua.bufr ln -sf $RADIANCE_INFO_DIR ./radiance_info ln -sf $BIASCORR_DIR ./biascorr (CRTM only) ln -sf $CRTM_COEFFS_DIR ./crtm_coeffs (RTTOV only) ln -sf $RTTOV_COEFFS_DIR/rtcoef*.dat ./rtcoef*.dat (Variational Bias Correction only) vi VARBC.in vi namelist.input (&wrfvar4, &wrfvar14, &wrfvar12, &wrfvar22) da_wrfvar.exe >&! wrfda.log

From RTTOV_8_7 Users Guide http://www.metoffice.gov.uk/research/interproj/nwpsaf/rtm/rttov8_ug.pdf sensor_id Instrument triplets platform_id satellite_id sensor_id platform_id satellite_id

namelist.input RTMINIT_NSENSOR = 12 RTMINIT_PLATFORM = 1, 1, 1, 9,10, 1, 1, 1, 1,10, 9, 2 RTMINIT_SATID = 15,16,18, 2, 2,15,16,17,18, 2, 2,16 RTMINIT_SENSOR = 3, 3, 3, 3, 3, 4, 4, 4,15,15,11,10 NOAA-15-AMSUA NOAA-16-AMSUA NOAA-18-AMSUA EOS-2-AMSUA METOP-2-AMSUA NOAA-15-AMSUB NOAA-16-AMSUB NOAA-17-AMSUB NOAA-18-MHS METOP-2-MHS EOS-2-AIRS DMSP-16-SSMIS

RAD_MONITORING (30) Integer array with dimension RTMINIT_NSENSER, where 0 for assimilating mode, 1 for monitoring mode (only calculate innovation). THINNING Logical, TRUE will perform thinning THINNING_MESH (30) Real array with dimension RTMINIT_NSENSOR, values indicate thinning mesh (in KM) for different sensors. READ_BIASCOEF Logical, control if reading bias correction coefficient files (Harris and Kelly scheme), always set to TRUE. BIASCORR Logical, control if perform bias correction (Harris and Kelly scheme). BIASPREP Logical, control if perform bias correction preparation (Harris and Kelly scheme). QC_RAD Logical, control if perform quality control, always set to TRUE. WRITE_IV_RAD_ASCII Logical, control if output Observation minus Background files, which are ASCII format and separated by sensors and processors. WRITE_OA_RAD_ASCII Logical, control if output Observation minus Analysis files (including also O minus B), which are ASCII format and separated by sensors and processors. USE_ERROR_FACTOR_RAD Logical, control if use a radiance error tuning factor file “radiance_error.factor”, which is created with empirical values or generated using variational tunning method (Desroziers and Ivannov, 1997) ONLY_SEA_RAD Logical, control if only assimilating radiance over water. TIME_WINDOW_MIN String, e.g., "2007-08-15_03:00:00.0000", start time of assimilation time window TIME_WINDOW_MAX String, e.g., "2007-08-15_09:00:00.0000", end time of assimilation time window

RTTOV coefficients rttov_coefs>ls -l total 7488 -rw-r--r-- 1 hclin users 142117 Sep 27 2006 rtcoef_dmsp_10_ssmi.dat -rw-r--r-- 1 hclin users 142117 Sep 27 2006 rtcoef_dmsp_11_ssmi.dat -rw-r--r-- 1 hclin users 142117 Sep 27 2006 rtcoef_dmsp_12_ssmi.dat -rw-r--r-- 1 hclin users 142117 Sep 27 2006 rtcoef_dmsp_13_ssmi.dat -rw-r--r-- 1 hclin users 142117 Sep 27 2006 rtcoef_dmsp_14_ssmi.dat -rw-r--r-- 1 hclin users 142117 Sep 27 2006 rtcoef_dmsp_15_ssmi.dat -rw-r--r-- 1 hclin users 434642 Sep 27 2006 rtcoef_dmsp_16_ssmis.dat -rw-r--r-- 1 hclin users 142115 Sep 27 2006 rtcoef_dmsp_8_ssmi.dat -rw-r--r-- 1 hclin users 142115 Sep 27 2006 rtcoef_dmsp_9_ssmi.dat -rw-r--r-- 1 hclin users 282099 Oct 31 2006 rtcoef_eos_2_amsua.dat -rw-r--r-- 1 hclin users 282103 Oct 31 2006 rtcoef_metop_2_amsua.dat -rw-r--r-- 1 hclin users 107146 Oct 31 2006 rtcoef_metop_2_mhs.dat -rw-r--r-- 1 hclin users 282102 Oct 30 2006 rtcoef_noaa_15_amsua.dat -rw-r--r-- 1 hclin users 107091 Oct 31 2006 rtcoef_noaa_15_amsub.dat -rw-r--r-- 1 hclin users 282102 Oct 30 2006 rtcoef_noaa_16_amsua.dat -rw-r--r-- 1 hclin users 107091 Oct 31 2006 rtcoef_noaa_16_amsub.dat -rw-r--r-- 1 hclin users 282102 Oct 30 2006 rtcoef_noaa_17_amsua.dat -rw-r--r-- 1 hclin users 107091 Oct 31 2006 rtcoef_noaa_17_amsub.dat -rw-r--r-- 1 hclin users 282102 Oct 30 2006 rtcoef_noaa_18_amsua.dat -rw-r--r-- 1 hclin users 107145 Oct 31 2006 rtcoef_noaa_18_mhs.dat

CRTM_02-29-08/CRTM_Coeffs>ls -l drwxr-xr-x 5 wrfhelp users 512 Mar 5 2008 AerosolCoeff drwxr-xr-x 5 wrfhelp users 512 Mar 5 2008 CloudCoeff drwxr-xr-x 5 wrfhelp users 512 Mar 5 2008 EmisCoeff drwxr-xr-x 4 wrfhelp users 512 Mar 5 2008 SpcCoeff drwxr-xr-x 5 wrfhelp users 512 Mar 5 2008 TauCoeff CRTM coefficients CRTM_02-29-08/CRTM_Coeffs/SpcCoeff>ls -l drwxr-xr-x 5 wrfhelp users 512 Dec 3 2007 Infrared drwxr-xr-x 5 wrfhelp users 512 Dec 3 2007 Microwave Link selected files from various source directories into single directory then link it as crtm_coeffs in the WRF-Var working directory CRTM_02-29-08/CRTM_Coeffs/SpcCoeff/Microwave>ls -l drwxr-xr-x 5 wrfhelp users 512 Dec 3 2007 AAPP_AC drwxr-xr-x 5 wrfhelp users 512 Dec 3 2007 NESDIS_AC drwxr-xr-x 5 wrfhelp users 512 Feb 25 2008 No_AC CRTM_02-29-08/CRTM_Coeffs/SpcCoeff/Microwave/No_AC>ls -l drwxr-xr-x 2 wrfhelp users 1536 Dec 3 2007 Big_Endian drwxr-xr-x 2 wrfhelp users 1536 Dec 3 2007 Little_Endian drwxr-xr-x 2 wrfhelp users 1536 Feb 13 2008 netCDF CRTM_02-29-08/CRTM_Coeffs/SpcCoeff/Microwave/No_AC/Big_Endian>ls -l total 76 -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_metop-a.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_metop-b.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_metop-c.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_n15.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_n16.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_n17.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_n18.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 1232 Dec 3 2007 amsua_n19.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 472 Dec 3 2007 amsub_n15.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 472 Dec 3 2007 amsub_n16.SpcCoeff.bin -rw-r--r-- 1 wrfhelp users 472 Dec 3 2007 amsub_n17.SpcCoeff.bin

Bias Correction Satellite radiance is generally considered biased with respect to a reference (e.g., background or analysis field in NWP assimilation) due to system error of observation itself, reference field and RTM.

Off-line bias correction statistics (Harris and Kelly, 2001) Step 1: generate 'biasprep' files by running WRF-Var To generate “biasprep” files separated by sensors and processors which contains necessary information (obs, background, o minus b, predictors etc.) for used by the off-line statistics. For statistical significance, month-long training dataset is preferred. Running WRF-Var with radiance data to be used and appropriate background field (e.g., produced from GFS analysis using WPS/REAL, or from a WRF 6h forecast in an existing assimilation experiment). Note that the effect of bias correction can depend to some extent upon the reference field used for statistics. BIASCORR=false BIASPREP=true # control to generate biasprep* files (biasprep_noaa-15-amsua.*, biasprep_noaa-16-amsua.) NTMAX=0 # no minimization needed since biasprep run just need to calculate innovation. biasprep* files will be used for the off-line statistics described in step 2. Step 2: off-line statistics biascorr 139 > ls -l total 1280 -rw-r--r-- 1 hclin ncar 13433 Jul 03 12:29 dmsp-16-ssmis.bcor -rw-r--r-- 1 hclin ncar 5213 Jul 03 12:29 metop-2-amsua.bcor -rw-r--r-- 1 hclin ncar 4433 Jul 03 12:29 metop-2-mhs.bcor -rw-r--r-- 1 hclin ncar 5213 Jul 03 12:29 noaa-15-amsua.bcor -rw-r--r-- 1 hclin ncar 4433 Jul 03 12:29 noaa-15-amsub.bcor -rw-r--r-- 1 hclin ncar 5213 Jul 03 12:29 noaa-16-amsua.bcor -rw-r--r-- 1 hclin ncar 4433 Jul 03 12:29 noaa-16-amsub.bcor -rw-r--r-- 1 hclin ncar 4433 Jul 03 12:29 noaa-17-amsub.bcor -rw-r--r-- 1 hclin ncar 5213 Jul 03 12:29 noaa-18-amsua.bcor -rw-r--r-- 1 hclin ncar 4433 Jul 03 12:29 noaa-18-mhs.bcor

error standard deviation used as observation errors in WRF-Var biascorr 142 > more noaa-16-amsua.bcor 15 30 18 4 1 29557 213.78 18.76 -0.36 2.23 2 23627 181.56 13.65 -0.41 2.36 3 34047 246.38 13.24 -0.32 1.41 4 48092 265.92 4.83 0.07 3.28 5 48746 254.89 4.37 0.05 0.24 6 49495 237.05 4.69 0.02 0.14 7 49514 224.78 3.85 0.04 0.15 8 49709 215.52 2.93 -0.04 0.34 9 50068 210.00 3.08 -0.03 0.24 10 49411 216.04 3.01 -0.05 0.30 11 48618 225.41 2.58 -0.04 0.51 12 47858 235.08 2.39 0.00 1.04 13 47763 245.94 2.72 0.01 1.70 14 48232 257.77 2.80 -0.05 2.22 15 33583 259.48 13.30 -0.14 2.09 1 0.00062 0.00133 0.02410 0.16702 -32.43610 2 -0.00398 -0.00356 -0.09144 0.14316 87.68317 3 -0.00113 -0.00217 -0.19485 0.11985 85.22787 4 0.00117 0.00017 -0.04903 -0.00055 2.68755 5 -0.00024 -0.00023 -0.00172 -0.00533 4.77967 6 -0.00011 -0.00010 -0.00596 0.00008 2.67331 7 -0.00026 0.00014 -0.00557 0.00029 1.25566 8 -0.00038 0.00039 -0.00446 -0.00183 -0.07683 9 -0.00017 0.00004 -0.00267 -0.00113 0.85999 10 -0.00000 -0.00032 0.00024 0.00039 1.47647 11 0.00009 -0.00064 0.00415 -0.00129 2.07531 12 0.00018 -0.00065 0.00592 -0.00388 0.89372 13 -0.00003 -0.00035 0.03559 -0.00685 -8.74460 14 -0.00033 -0.00285 0.06766 -0.00396 3.14041 15 -0.00124 -0.00382 -0.23044 0.14527 109.53830 RELATIVE SCAN BIASES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 -15.13 -14.84 -13.90 -10.91 -8.27 -5.86 -4.16 -2.59 -1.78 -1.14 -0.62 -0.63 -0.31 0.01 -0.10 0.10 -0.06 -0.15 -0.21 -0.50 -1.01 -1.83 -2.72 -4.10 -5.93 -8.46 -11.21 -13.78 -15.14 -15.36 2 -10.74 -10.11 -11.31 -13.20 -12.55 -8.79 -6.14 -3.91 -2.61 -1.63 -0.87 -0.78 -0.32 0.09 -0.10 0.10 -0.05 -0.20 -0.34 -0.61 -1.13 -2.08 -3.25 -5.07 -7.47 -10.84 -14.37 -12.72 -10.91 -10.20 3 -13.01 -11.37 -9.49 -7.44 -5.64 -4.11 -2.88 -1.90 -1.26 -0.66 -0.37 -0.33 -0.00 0.17 0.00 -0.00 -0.17 -0.49 -0.69 -0.94 -1.50 -2.10 -2.93 -3.90 -5.14 -6.64 -8.68 -10.66 -12.72 -14.38 4 -1.72 -1.70 -1.73 -1.53 -1.30 -1.12 -0.81 -0.66 -0.60 -0.13 -0.27 -0.12 0.09 -0.00 0.02 -0.02 -0.06 0.03 -0.00 0.11 -0.07 -0.30 -0.43 -0.71 -0.98 -1.06 -1.42 -1.63 -1.75 -1.72 5 -0.37 -0.52 -0.51 -0.42 -0.46 -0.38 -0.39 -0.31 -0.27 -0.21 -0.14 -0.11 -0.08 0.00 -0.02 0.02 0.02 -0.02 -0.03 -0.08 -0.12 -0.19 -0.23 -0.34 -0.35 -0.42 -0.45 -0.39 -0.43 -0.27 error standard deviation used as observation errors in WRF-Var Coefficients for air-mass bias correction column 1: 1000-300mb thickness column 2: 200-50mb thickness column 3: Surface skin temperature column 4: Total column water vapor column 5: offset

Variational Bias Correction (VarBC) VARBC.in file is an ASCII file that controls all of what is going into the VarBC. Sample VARBC.in VARBC version 1.0 - Number of instruments: 2 ------------------------------------------------ Platform_id Sat_id Sensor_id Nchanl Npredmax 1 15 3 5 8 -----> Bias predictor statistics: Mean & Std & Nbgerr 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 0 0 0 0 0 -----> Chanl_id Chanl_nb Pred_use(-1/0/1) Param 5 5 0 0 0 0 0 0 0 0 6 6 0 0 0 0 0 0 0 0 7 7 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 1 16 4 3 8 3 3 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0

Sample VARBC.out (VARBC.in) VARBC version 1.0 - Number of instruments: 4 ------------------------------------------------ Platform_id Sat_id Sensor_id Nchanl Npredmax 1 15 4 5 8 -----> Bias predictor statistics: Mean & Std & Nbgerr 1.0 9273.1 8677.8 290.4 24.0 51.7 3502.8 260484.8 0.0 273.5 293.3 8.0 12.3 28.9 2827.2 252657.9 10000 10000 10000 10000 10000 10000 10000 10000 -----> Chanl_id Chanl_nb Pred_use(-1/0/1) Param 1 1 0 0 0 0 0 0 0 0 -3.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 2 0 0 0 0 0 0 0 0 -0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3 3 1 1 1 1 1 1 1 1 1.213 -0.062 0.003 -0.070 0.008 -0.230 -0.111 -0.024 4 4 1 1 1 1 1 1 1 1 3.056 0.050 0.053 0.015 -0.059 0.304 0.241 0.203 5 5 1 1 1 1 1 1 1 1 0.869 0.034 -0.089 0.074 0.019 -0.118 -0.031 0.022 1 16 4 5 8 1.0 9280.2 8641.2 290.0 24.1 52.6 3568.9 264767.4 0.0 209.5 245.9 7.9 11.3 28.3 2792.1 249977.0 1 1 0 0 0 0 0 0 0 0 0.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 2 0 0 0 0 0 0 0 0 -0.800 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3 3 1 1 1 1 1 1 1 1 0.372 -0.028 0.010 0.060 0.025 0.117 0.023 -0.042 4 4 1 1 1 1 1 1 1 1 0.968 0.016 -0.003 -0.041 0.045 -0.018 -0.030 -0.028 5 5 1 1 1 1 1 1 1 1 -3.290 0.073 -0.093 0.096 0.018 0.011 0.010 0.004

Evolution of VarBC parameters

radiance monitoring Generally monitoring stage is necessary before new instruments enter into operational assimilation system Two aspects Assimilating/Monitoring mode switch on/off ability for different satellite instruments in WRF-Var for real time operation Statistics/Visualization tool to monitor and assess observation quality

radiance monitoring - continue namelist parameter: rad_monitoring e.g., 10 instruments ingested into WRF-Var rad_monitoring=0,0,0,0,0,1,1,1,1,1 0: assimilating mode, 5 sensors calculate innovation (O minus B) and enter into minimization 1: monitoring mode, 5 sensors calculate innovation but NOT enter into minimization

radiance monitoring - continue Radiance Post-Processing/Visualization Output innovation and auxiliary information into ASCII files separated for CPUs Convert ASCII files to one NETCDF file for each sensor (independent Fortran90 program), easy to manipulate with ncdump, nco, ncview tools NCL script to plot various graphics Channel TB, Histogram, scatter plot, time series etc. Can be included in script to routinely produce graphics after WRF-Var runs Users can control (by simple script parameter setup) to plot over smaller domain, only over land or sea, QCed or no-QCed observations

------ OMB before bias correction ------ OMB after bias correction