Waves in the Ocean. Waves are the undulatory motion of a water surface. Parts of a wave are, Wave crest,Wave trough, Wave height (H), Wave Amplitude,

Slides:



Advertisements
Similar presentations
Chapter 7 Waves in the Ocean ©2003 Jones and Bartlett Publishers.
Advertisements

CHAPTER 8 Waves and Water Dynamics
WAVES disturbance caused by the movement of energy from a source through some medium (solid, liquid or gas). THERE ARE MANY DIFFERENT SIZES AND SHAPES.
Introduction to Oceanography Dynamic Oceanography: Waves.
Waves in the Ocean. Waves are the undulatory motion of a water surface. Parts of a wave are, Wave crest,Wave trough, Wave height (H), Wave Amplitude,
The first prelim will be held during regular class time on Thursday 21 February A short in-class review will be held Tuesday 19 February to go over student.
Topic 16 Waves GEOL 2503 Introduction to Oceanography.
Chapter 9: Waves and Water Dynamics Fig Waves are moving energy Forces cause waves to move along air/water or within water Wind (most surface ocean.
Waves Anatomy of wave – Wave- transmission of energy through matter – Longitudinal wave- matter oscillates in same direction of energy transmission –
Waves. 2 3  Waves are created on the surface of water as the result of a generating force.  An additional force, called the restoring force, acts to.
WAVES.
Chapter 21 Section 2.
  waimea-bay-cam
Waves in the Ocean Words from these PPT slides are already on the course web site. Waves in the Ocean Words from these PPT slides are already on the course.
Waves. 2 3 Waves are created on the surface of water as the result of a generating force. An additional force, called the restoring force, acts to return.
Waves and Tides. Anatomy of a Wave What is a wave? -Transmission of energy through matter; matter moves back and forth or rotates, but then returns to.
Chapter 10 Waves Capillary Waves, Wind Waves, Tsunamis, Internal waves
WAVES disturbance caused by the movement of energy from a source through some medium (solid, liquid or gas).
Waves and Tides Wave movement and properties Wind and waves
Waves Wave- disturbance caused by the movement of energy from a source through a medium (solid, liquid, gas) –As the energy travels, the medium moves.
Waves. Wave Terminology H = Height A = Amplitude = 1/2H L = λ = Wave Length ( distance 2 consecutive crests) T = Wave Period (Time between 2 consecutive.
Ocean Waves What causes ocean waves to form and move?
Chapter 10 Ocean Waves Part 1 ftp://ucsbuxa.ucsb.edu/opl/tommy/Geog3awinter2011/
Chapter 8 Waves and Water Dynamics
Movements of the Ocean Section 2 Section 2: Ocean Waves Preview Objectives Ocean Waves Wave Energy Waves and the Coastline Tsunamis Wave Model of Refraction.
Ocean Waves wave a periodic disturbance in a solid, liquid, or gas as energy is transmitted through a medium two basic parts—a crest and a trough.
The interface between air and sea is almost always in motion…
WAVES. Waves Wave - disturbances of the water surface (energy transmitted through matter) Manifestation of energy propagating on the ocean surface Waves.
Today’s Tune “This is the Sea” by The Waterboys. Next Midterm Monday, May 16, 2011, 1:00 ¥ Here in Gilfillan Auditorium, closed book ¥ Same format as.
Waves and Water Dynamics
Waves n Characteristics of All Wind-generated Waves n Deep Water Waves n Shallow Water Waves n Other Water Waves.
© 2011 Pearson Education, Inc. CHAPTER 8 Waves and Water Dynamics.
Chapter 10 Waves.
Waves Wave Spectrum Surface waves deep-water waves shallow-water waves Wave Development Wave Equations Global Wave Heights S.
Types of Ocean waves. Capillary wave capillary wave, small, free, surface-water wave with such a short wavelength that its restoring force is the water’s.
N Characteristics of All Wind-generated Waves n Deep Water Waves n Shallow Water Waves n Other Water Waves.
What Causes Waves? ¥ Wind ¥ Submarine disturbance ¥ Gravitational attraction of sun and moon.
Waves and things. Homework Due Tuesday Read Pages Answer in complete sentences What causes the Coriolis effect? How does the Coriolis effect wind.
WAVES By: Bridget Pettit & Victor Perez. Waves are a result of forces acting on the surface of the water. GENERATIONG FORCES : is a forces (ie rock or.
WAVES. Understanding wave physics is important for human life (and not just for surfing) 1. A wave is the transmission of energy through matter – in this.
Ocean Waves Capillary Gravity Wind generated Tides Tsunamis Seiches.
Ocean Waves Chapter 10 Oceanography.
Chapter 7 Waves in the Ocean.
WAVES. Wave – propagation of energy through a medium. Speed is determined by the properties of the medium. Gravity waves – sufficiently large waves where.
Waves Waves result from interplay between disturbing forces & restoring forces In the oceans, disturbances originate –At the surface, winds, ships, etc.
Waves Chapter 9.
The Waves An Introduction to the World’s Oceans Sverdrup et al. - Chapter Ten - 8th Ed.
Waves Introduction Definition Classification Wave parameters Standing Waves Wave theories Beaufort scale Spilling and breaking waves Tsunamis Seiches Internal.
Waves. Waves Transport energy over a body of waterTransport energy over a body of water.
OCEAN WAVES Waves & Tides Unit 7. DEFINITION OF A WAVE: The disturbance of a medium (water in this case) caused by the movement of energy from a source.
Waves. What is a wave?  a transmission of energy through matter.
© 2014 Pearson Education, Inc. W Waves and Water Dynamics Chapter 8.
Waves Transmit energy (not mass) across the ocean’s surface
WAVES.
Waves Transmit energy (not mass) across the ocean’s surface
Waves.
WAVES.
WAVES UNDULATIONS OF THE WATER CAUSED BY WINDS BLOWING ACROSS THE SURFACE OF THE SEA. They consist of orbital movements of water molecules which diminishes.
Lab 5 WAVES. What is waves ? how do waves form? Wave is a movement of upper surface of water due to transfer of energy from the wind into the water without.
Wave Parameters (Figure 7-1a)
Next Midterm Monday, May 18, 2009, 1:00
WAVE.
Waves.
Waves.
Wave Parameters (Figure 7-1a)
Fur Fun: Riding Giants
Waves in the Ocean.
Wave Dynamics And Wind Waves
Wave Dynamics And Wind Waves
Waves Transmit __________ (not __________) across the ocean’s surface
Presentation transcript:

Waves in the Ocean

Waves are the undulatory motion of a water surface. Parts of a wave are, Wave crest,Wave trough, Wave height (H), Wave Amplitude, Wave length (L),and Wave period (T). Wave period provides a basis for the wave classifications: Capillary waves, Chop, Swell, Tsunamis, Seiches. 7-1 Properties of Ocean Waves

Most of the waves present on the ocean’s surface are wind-generated waves. Size and type of wind-generated waves are controlled by: Wind velocity, Wind duration, Fetch, and Original state of sea surface. As wind velocity increases wave length, period and height increase, but only if wind duration and fetch are sufficient. Fully developed sea is when the waves generated by the wind are as large as they can be under current conditions of wind velocity and fetch. Significant wave height is the average wave height of the highest 1/3 of the waves present and is a good indicator of potential for wave damage. 7-1 Properties of Ocean Waves

Progressive waves are waves that move forward across the surface. As waves pass, wave form and wave energy move rapidly forward, not the water. Water molecules move in an orbital motion as the wave passes. Diameter of orbit increases with increasing wave size and decreases with decreasing water depth. Wave base is the depth to which a wave can move water. If the water is deeper than wave base, orbits are circular and there is no interaction between the bottom and the wave, but if the water is shallower than wave base, orbits are elliptical and become increasingly flattened towards the bottom. 7-2 Wave Motions

There are three types of waves defined by water depth: Deep-water wave, Intermediate-water wave, and Shallow-water wave. Celerity is the velocity of the wave form, not the water. The celerity of a group of waves all traveling at the same speed in the same direction is less than the speed of the waves within the group. 7-2 Wave Motions

Fetch is the area of contact between the wind and the water and is where wind-generated waves begin. Seas is the term applied when the fetch has a chaotic jumble of new waves. Waves continue to grow until the sea is fully developed or becomes limited by fetch restriction or wind duration. Wave interference is the momentary interaction between waves as they pass through each other. Wave interference can be constructive or destructive. Because celerity increases as wave length increases, longer waves travel faster than short waves. 7-3 Life History of Ocean Waves

The shallower the water, the greater the interaction between the wave and the bottom alters the wave properties, eventually causing the wave to collapse. Celerity decreases as depth decreases. Wave length decreases as depth decreases. Wave height increases as depth decreases. Troughs become flattened and wave profile becomes extremely asymmetrical. Period remains unchanged. Period is a fundamental property of a wave Refraction is the bending of a wave into an area where it travels more slowly. 7-3 Life History of Ocean Waves

Wave steepness (stability) is a ratio of wave height divided by wave length (= H/L). In shallow water, wave height increases and wave length decreases. When H/L is larger than or equals 1/7 (H/L  1/7), the wave becomes unstable. There are three types of breakers:, Spilling breakers, Plunging breakers, and Surging breakers. 7-3 Life History of Ocean Waves

Storm surge is the rise in sea level resulting from low atmospheric pressure associated with storms and the accumulation of water driven shoreward by the winds. Water is deeper at the shore area, allowing waves to progress farther inland. Storm surge is especially severe when superimposed upon a high tide. 7-3 Life History of Ocean Waves

Standing waves or seiches consist of a water surface “seesawing” back and forth. A node is an imaginary line across the surface which experiences no change in elevation as the standing wave oscillates. It is the line about which the surface oscillates. Antinodes are where there is the maximum displacement of the surface as it oscillates and are usually located at the edge of the basin. Geometry of the basin controls the period of the standing wave. A basin can be closed or open. Standing waves can be generated by storm surges. 7-4 Standing Waves

Resonance amplifies the displacement at the nodes and occurs when the period of the basin is similar to the period of the force producing the standing wave. 7-4 Standing Waves

Internal waves form within the water column on the pycnocline. Because of the small density difference between the water masses above and below the pycnocline, wave properties are different compared to surface waves. Internal waves display all the properties of surface progressive waves including reflection, refraction, interference, breaking, etc. Any disturbance to the pycnocline can generate internal waves, including: Flow of water related to the tides., Flow of water masses past each other, Storms, or Submarine landslides. 7-5 Other Types of Progressive Waves

Tsunamis were previously called tidal waves, but are unrelated to tides. Tsunamis consist of a series of long-period waves characterized by very long wave length (up to 100 km) and high speed (up to 760 km/hr) in the deep ocean. Because of their large wave length, tsunamis are shallow-water to intermediate-water waves as they travel across the ocean basin. They only become a danger when reaching coastal areas where wave height can reach 10 m. Tsunamis originate from earthquakes, volcanic explosions, or submarine landslides. 7-5 Other Types of Progressive Waves