 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Methods to directly measure non-resonant stellar reaction rates
Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 
6. Stars evolve and eventually ‘die’
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
Introduction to nuclear physics Hal. Nucleosynthesis Stable nuclei.
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
1 Some key problems and key reactions in Nuclear Astrophysics Main issues: BBN: was the universe always the same? What’s in the core of Sun and other MS.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Nuclear reactions and solar neutrinos
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY CASPAR An underground Accelerator Laboratory for Nuclear Astrophysics.
The Standard Solar Model and Experiments Predictions versus experiments Uncertainties in predictions Challenges and open questions BP00: astro-ph/
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
What temperature would provide a mean kinetic energy of 0.5 MeV? By comparison, the temperature of the surface of the sun  6000 K.
Nuclear Astrophysics with NIF: Studying Stars in the Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Physics Colloquium Ⅱ Shibata Laboratory OKA, Hiroki Nucleosyntheses studied with a Van de Graaff Accelerator [Contents] 1. Objective.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Nucleosynthesis in AGB Stars: the Role of the 18 O(p,  ) 15 N Reaction Marco La Cognata.
Astroparticle physics 1. stellar astrophysics and solar neutrinos Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla,
Massive Star Evolution overview Michael Palmer. Intro - Massive Stars Massive stars M > 8M o Many differences compared to low mass stars, ex: Lifetime.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Tariq Al-Abdullah Hashemite University, Jordan Cairo 2009 Problems and Issues in Nuclear Astrophysics.
Selected Topics in Astrophysics
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
Laboratori Nazionali del Gran Sasso. Stefano Ragazzi – INFN LNGS & UNIMIB 3400 m.w.e. 1.1 μ / (m 2 h) Muon flux: m -2 s -1 Neutron flux: 2.92.
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Why going underground g-background
The scientific program for the first five years of LUNA-MV
the s process: messages from stellar He burning
Laboratory for Underground Nuclear Astrophysics
Alessandra Guglielmetti Universita’ degli Studi di Milano and
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
Nucleosynthesis 12 C(
Chapter 9 The Main Sequence.
BBN, neutrinos and Nuclear Astrophysics
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Institut de Physique Nucléaire Orsay, France
Chapter 3, Part2 Nuclear Chemistry CHEM 396 by Dr
Presentation transcript:

 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann Extrap. Meas.  Carlo Broggini INFN-Padova Stellar Energy+Nucleosynthesis  (E star ) with E star << E Coulomb Hydrogen Burning LUNA, the Sun and the other stars S(E)

Laboratory for Underground Nuclear Astrophysics Beam: H,He Voltage Range : kV Output Current: ~1 mA Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector

Resonance? Hydrogen burning in the 6 degrees: 6*10 11 kg/s of H He +0.7% M H E activation=prompt gamma  at low energy with 4% error H+ 2 H burning in 6 degrees

3 He ( 3 He,2p) 4 He Q = MeV E p max = 10.7 MeV Suppression of 7 Be and 8 B e due to a resonance?  min =20 fb (2 events/month) No resonance at the Gamow peak Neutrino oscillations

14 N(p, g ) 15 O Q=7.3 MeV cno F  S 1,14 Globular Cluster Age S(0)= keV b (Ad98) S(0)= keV b (An99) Age Cluster =F( £ turnoff ) £ to =F(S 1,14 ) RedBlue turnoff £ Surface colour

N+p O 1/2 + 7/2 + 5/2 + 3/2 + 3/2 - 5/2 + 1/2 + 1/2 - “High” energy: solid target + HpGe gamma spectrum of 14 N(p,  ) 15 O at 140 keV beam energy 14 N(p, g ) 15 O Low energy: gas target + BGO beam energy 90 keV

* ½ cno from the Sun * Globular Cluster age +1Gy * more C at the surface of AGB From a measurement of cno from the Sun S t (0)=1.57±0.13 keV b Metallicity of the Sun core (C+N) Photosphere and core metallicity equal? Solar composition problem: Z/X ~0.024 ~ SSM predictions disagree with Helioseismology results cno =f(Z,S 14 ), ~30% decrease from high to low metallicity

2 H(α, g ) 6 Li Q=1.47 MeV 15 N(p, g ) 16 O Q=12.13 MeV 17 O(p, g ) 18 F Q=5.6 MeV 23 Na(p, g ) 24 Mg Q=11.7 MeV 22 Ne(p, g ) 23 Na Q=8.8 MeV 18 O(p, g ) 19 F Q=8.0 MeV 25 Mg(p, g ) 26 Al Q=6.3 MeV LUNA beyond the Sun: isotope production in the hydrogen burning shell of AGB stars (~ T 6 ), Nova nucleosynthesis (~ T 6 ) and BBN O(p, α ) 14 N Q=1.2 MeV 18 O(p, α ) 15 N Q=4.0 MeV

12 C( , g ) 16 O the most important reaction of nuclear astrophysics: production of the elements heavier than A=16, star evolution from He burning to the explosive phase and ratio C/O 13 C( ,n) 16 O, 22 Ne( ,n) 25 Mg the stellar sources of the neutrons responsible for the S-process ( , g ) on 14 N, 15 N, 18 O…… LUNA beyond the Hydrogen burning: 3.5 MV accelerator mainly devoted to Helium-Burning (in stars: ~ 100 T 6, ~10 5 gr/cm 3 ) June 2012: accelerator+site preparation financed by the Italian Ministry of University and Research with 2.8 ME ‘Starting the LUNA-MV Collaboration’, LNGS, February 6th-8th 2013

3 He( , g ) 7 Be: 14 N(p, g ) 15 O:   down to 70 keV cno reduced by  2 with 8% error Sun core metallicity Globular cluster age increased by Gy More carbon at the surface of AGB stars 3 He ( 3 He,2p) 4 He:  down to 16 keV no resonance within the solar Gamow Peak Cross section measured with 4% error 7 Be ≈ prompt g 25 Mg(p, g ) 26 Al: first measurement of the 92 keV resonance, strength ωγ =(2.9±0.6)x eV 15 N(p, g ) 16 O:   down to 70 keV, reduced by  2 Future: Hydrogen and Helium burning (3.5 MV accelerator) 17 O(p, g ) 18 F: rate Novae temperature reduced to 5% uncertainty on 18 O, 18 F and 19 F less than 10% (from 40-50%)

3 He( , g ) 7 Be Solar Neutrinos: 7 Be, 8 B F  S 34 BBN 7 Li Q=1.6 MeV

  down to 93 keV 7 Be ≈ prompt g S 34 (0) =  keV barn