 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Methods to directly measure non-resonant stellar reaction rates
Underground Measurement of the 17O+p Reactions
Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 
1 Some key problems and key reactions in Nuclear Astrophysics Main issues: BBN: was the universe always the same? What’s in the core of Sun and other MS.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Nuclear reactions and solar neutrinos
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
Stuttgart Dynamitron at Bucharest - Perspectives and New Activities
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Recent Results for proton capture S-factors from measurements of Asymptotic Normalization Coefficients R. Tribble Texas A&M University OMEG03 November,
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY CASPAR An underground Accelerator Laboratory for Nuclear Astrophysics.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Astroparticle physics 1. stellar astrophysics and solar neutrinos Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla,
Massive Star Evolution overview Michael Palmer. Intro - Massive Stars Massive stars M > 8M o Many differences compared to low mass stars, ex: Lifetime.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Selected Topics in Astrophysics
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
Laboratori Nazionali del Gran Sasso. Stefano Ragazzi – INFN LNGS & UNIMIB 3400 m.w.e. 1.1 μ / (m 2 h) Muon flux: m -2 s -1 Neutron flux: 2.92.
22Ne(a,n)25Mg status and perspectives (for an underground experiment)
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
L’esperimento LUNA- CdS MI giugno 2013
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
Stars, Accelerators and Underground Laboratories
Why going underground g-background
for the LNL-Ganil collaboration
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
the s process: messages from stellar He burning
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
V riunione nazionale di astrofisica nucleare
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
Indirect reactions for the Tandem-Alto Pole of Orsay
Chapter 9 The Main Sequence.
BBN, neutrinos and Nuclear Astrophysics
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
7Be neutrino line shifts in the sun.
Presentation transcript:

 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann Extrap. Meas.  Carlo Broggini, INFN-Padova Stellar Energy+Nucleosynthesis  (E star ) with E star << E Coulomb Hydrogen Burning LUNA, the Sun and the other stars S(E)

Laboratory for Underground Nuclear Astrophysics Voltage Range : kV Output Current: 1 mA 400 kV) Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector

p + p  d + e + + e d + p  3 He +  3 He + 3 He   +2p 3 He + 4 He  7 Be +  7 Be+e -  7 Li +  + e 7 Be + p  8 B +  7 Li + p   8 B  2  + e + + e pp chain 6% prediction of 7 Be solar neutrino flux, opacity dominant error source Proto-stars and BBN In search of the resonance 85%

3 He ( 3 He,2p) 4 He Q = MeV  min = 0.02 pb E p max = 10.7 MeV Suppression of 7 Be and 8 B ?

14 N(p, g ) 15 O Q=7.3 MeV cno F  S 1,14 Globular Cluster Age S(0)= keV b (Ad98) S(0)= keV b (An99) E<1.20 MeV E<1.73 MeV

N+p O 1/2 + 7/2 + 5/2 + 3/2 + 3/2 - 5/2 + 1/2 + 1/2 - “High” energy: solid target + HpGe gamma spectrum of 14 N(p,  ) 15 O at 140 keV beam energy 14 N(p, g ) 15 O Low energy: gas target + BGO beam energy 90 keV

* ½ cno from the Sun * Globular Cluster age +1Gy * more C at the surface of AGB From a measurement of cno from the Sun S t (0)=1.61±0.18 keV b New study with a ‘clover’ detector of the capture to the ground state S t (0)=1.57±0.13 keV b Metallicity of the Sun core (C+N) Photosphere and core metallicity equal? 2005: solar composition problem

2 H(α, g ) 6 Li Q=1.47 MeV 15 N(p, g ) 16 O Q=12.13 MeV 17 O(p, g ) 18 F Q=5.6 MeV 23 Na(p, g ) 24 Mg Q=11.7 MeV 22 Ne(p, g ) 23 Na Q=8.8 MeV 18 O(p, g ) 19 F Q=8.0 MeV 25 Mg(p, g ) 26 Al Q=6.3 MeV LUNA beyond the Sun: isotope production in the hydrogen burning shell of AGB stars (~ T 6 ), Nova nucleosynthesis (~ T 6 ) and BBN   down to 70 keV reduced by  factor 2 down to 92 keV resonance: the lowest ever directly measured resonance strength

12 C( , g ) 16 O the ‘Holy Grail’ of nuclear astrophysics 13 C( ,n) 16 O, 22 Ne( ,n) 25 Mg the stellar sources of the neutrons responsible for the S-process ( , g ) on 14 N, 15 N, 18 O…… LUNA beyond the Hydrogen burning: 3.5 MV Sasso - Letter of Intent to LNGS Round 2/ Proposal

3 He( , g ) 7 Be: 14 N(p, g ) 15 O:  down to 70 keV cno reduced by  2 with 8% error Sun core metallicity Globular cluster age increased by Gy More carbon at the surface of AGB stars 3 He ( 3 He,2p) 4 He:  down to 16 keV no resonance within the solar Gamow Peak Δ Φ( Be ) reduced to 6% 7 Be ≈ prompt g 15 N(p, g ) 16 O:  down to 70 keV, reduced by  2 25 Mg(p, g ) 26 Al: first measurement of the 92 keV resonance Future: Hydrogen burning in shell, Helium burning

INFN - Laboratori Nazionali del Gran Sasso D.Bemmerer,C.Broggini,A.Caciolli,P. Corvisiero,H.Costantini, Z.Elekes, A.Formicola, Z. Fülöp, G.Gervino,A.Guglielmetti, C.Gustavino, G. Gyurky, G. Imbriani, M.Junker, A.Lemut, M.Marta,C.Mazzocchi,R.Menegazzo, P.Prati, V.Roca, C.Rolfs, C.RossiAlvarez,E.Somorjai, O.Straniero,F.Strieder, F.Terrasi,H.P.Trautvetter INFN : Genova, LNGS, Milano, Napoli, Padova, Torino Inst.Physik mit Ionenstrahlen, Ruhr- Universität Bochum Forschungszentrum Dresden-Rossendorf Atomki Debrecen LUNA

3 He( , g ) 7 Be Solar Neutrinos: 7 Be, 8 B F  S 34 BBN 7 Li Q=1.6 MeV

  down to 93 keV 7 Be ≈ prompt g S 34 (0) =  keV barn Δ Φ( B ) reduced to 11% Δ Φ( Be ) reduced to 6% ( dominant error source: opacity ) Borexino