TAS workshop 30-31/3/2004 Aspects of recoil-ion -  correlations in atomic traps A reminder why (V-A, ?S + ?T) Energy scales  basic setup  RIMS Precision.

Slides:



Advertisements
Similar presentations
December 10, 2008 TJRParticle Refrigerator1 The Particle Refrigerator Tom Roberts Muons, Inc. A promising approach to using frictional cooling for reducing.
Advertisements

IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
First measurement of kaonic hydrogen and nitrogen X-rays at DA  NE J. Zmeskal Institute for Medium Energy Physics, Vienna for the DEAR Collaboration LNF.
electrostatic ion beam trap
MICE the Muon Ionization Cooling Experiment Emilio Radicioni, INFN EPS-HEP Aachen 2003.
M. Dracos 1 Double Beta experiment with emulsions?
1 EMCal & PID Rikard Sandström Universite de Geneve MICE collaboration meeting 26/6-05.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Progress on the final TWIST measurement of James Bueno, University of British Columbia and TRIUMF on behalf of the Triumf Weak Interaction Symmetry Test.
Dec 2005Jean-Sébastien GraulichSlide 1 Improving MuCal Design o Why we need an improved design o Improvement Principle o Quick Simulation, Analysis & Results.
„the perfect stopped beam experiment“ clean fragment separation   unique fragment identification  A, Z fragment position  x, y, z decay radiation 
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Beta and particle decay spectroscopy at the Super FRS Zenon Janas Nuclear Spectroscopy Division Warsaw University.
Design Concepts for Magnetic Insulation Diktys Stratakis Advanced Accelerator Group Brookhaven National Laboratory NFMCC Meeting – LBL January 28, 2009.
Fragmentation mechanisms for Methane induced by electron impact
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Z AND W PHYSICS AT CEPC Haijun Yang, Hengne Li, Qiang Li, Jun Guo, Manqi Ruan, Yusheng Wu, Zhijun Liang 1.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
1 Beta Neutrino Correlation and T-Violation Experiment in Nuclear Beta Decay Rikkyo Univ. Jiro Murata Collaboration Rikkyo Univ. / RIKEN Asahi ANL / Titech.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nathal Severijns, JRA-11 TRAPSPEC TRAPSPEC JRA-11 EURONS PCC Meeting, Groningen, December 2006 JRA-11 (TRAPSPEC) Improvements and developments of.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
{ Precision measurements of the beta neutrino correlation in the WI Electrostatic Ion Trap 3 December 2012 Sergey Vaintraub.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
Status and first results of the KASCADE-Grande experiment
Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays Leandar Litov, CERN On behalf of the NA48 Collaboration.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
“Design Of The Ion Extraction System In A Reaction Microscope” Speaker: Marco Panniello Federico II University Federico II University Industrial Engineering.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Precision Measurements of W and Z Boson Production at the Tevatron Jonathan Hays Northwestern University On Behalf of the CDF and DØ Collaborations XIII.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Why Accelerator Mass spectrometry (AMS) The determination of the concentration of a given radionuclide in a sample can be done in 2 ways: a) measure the.
K - 4 He  3 He, π-, Λ and some consequences S. Wycech – NCBJ – Warsaw.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
Giovanni Onorato Fermilab University of Rome “Guglielmo Marconi” INFN Lecce Mu2e general presentation.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Statistical and systematic uncertainties in a and A J. David Bowman SNS FPNB Magnet Meeting North Carolina State University Jan. 8, 2006.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
Correlation measurements in nuclear  -decay O.Naviliat-Cuncic Laboratoire de Physique Corpusculaire de Caen and Université de Caen Basse-Normandie NuPAC.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 18-September-2002Weak Interaction Trap for CHarged particles1 Present status of WITCH experiment Valentin Kozlov.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
OMC rates in different nuclei related to 2β-decay. K.Ya. Gromov, D.R. Zinatulina, C. Briançon, V.G. Egorov, A.V. Klinskih, R.V. Vasiliev, M.V.Shirchenko,I.
“MuCyc” Update Kevin Paul Tech-X Corporation Don Summers University of Mississippi 1 NFMCC Meeting - 27 Jan 2009.
Monte Carlo simulation of the particle identification (PID) system of the Muon Ionization Cooling Experiment (MICE) Mice is mainly an accelerator physics.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Low energy underground experimentation with a TPC G
Beta Neutrino Correlation Measurement with Trapped Radioactive Ions
Neutron detectors for the NMX instrument
Neutronics Studies for the Nab Experiment
PHOTON DETECTION AND LOCALIZATION WITH THE
Separation of Cosmic-Ray Components in Water Cherenkov Detector
Experimental determination of isospin mixing in nuclear states;
Monoenergetic Neutrino Beam for Long Baseline Experiments
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Presentation transcript:

TAS workshop 30-31/3/2004 Aspects of recoil-ion -  correlations in atomic traps A reminder why (V-A, ?S + ?T) Energy scales  basic setup  RIMS Precision  what to watch out for (LBL).  + versus  - RIMS issues Preliminary setup

TAS workshop 30-31/3/2004 Motivation Standard Model  decay  duddud duuduu :pnpn:pnpn :pnpp:pnpp neutrino electron W±W± V - A (V +  S) – (A +  T) If not SM  Measure  - correlations

TAS workshop 30-31/3/2004 Correlations in  -decay R and D test both TRV D  most potential R  scalar and tensor (EDM, a) Learn the trade with “a”: ignore spin degrees of freedom

V 0 (keV) Principle idea MOT + RIMS MeV  detector MCP -V 0 +V 0 0 SM Not SM TOF  E // very efficient X,Y  E  for charged recoils start stop

TAS workshop 30-31/3/2004 Learn from other experiments TRIUMF: 38 K m (0 +  0 + ) a F =0.992(8)(5) promised:?(3)(3) LBL: 21 Na (3 + /2  3 + /2) a= 0.524±0.005 syst systematic error: 1.RIMS related 41% 2.Unwanted decays (off walls etc.) 26% 3.Beta detection 24% “work on RIMS”

TAS workshop 30-31/3/2004  + versus  -  + decay  recoil neutral (80%) 21 Na (11p + 10n)  21 Ne (10p + 11n) +  + 80% 19% 3% 0.3%  - decay  recoil 1 + : 80%  no good case (?) 25 Na (11p + 14n)  25 Mg (12p + 13n) +  - Neutrals not efficient MCP inefficient and tricky  + momentum  q-dist 2  background (511 keV)

TAS workshop 30-31/3/2004 RIMS scaled to  -decay Atomic physics –recoil  eV-meV  fields V/cm  -decay –recoil 0.1 keV  fields kV/cm –  -energy >> keV MeV MCP -V+V0 start stop TOF  E // TOF + r  E  TOF  Origin Affects “a” strongly z r -V  recoil da

TAS workshop 30-31/3/2004 Time scales and accuracy Resolution   1ns 2a = 10 cm qV   5 kV   1 eV Range > 400 ns (q=1) Dynamic range > 4  s r < 4 cm Time focus d=2a Position focus? Pileup? ……….??

Two realizations Setup at TRIUMF (Behr et al.) for 38m K (t 1/2 =0.93 s; 0 +  0 + ) 21 Na production Cooling stage Trapping & detection Freedman/Vetter setup LBL 21 Na

TAS workshop 30-31/3/2004 Conclusions Would have preferred  - emitter (background) RIMS is the trickiest part Need TOF+2D readout MCP (+ multi hit) Want 2D + energy of  Simulations needed (position and time focus) Separate production from trapping (background) Start working …..