Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1.

Slides:



Advertisements
Similar presentations
Detection volume in confocal microscopy:
Advertisements

Single-image molecular analysis for accelerated fluorescence imaging Yan Mei Wang Department of Physics Washington University in St. Louis.
Fluorophores bound to the specimen surface and those in the surrounding medium exist in an equilibrium state. When these molecules are excited and detected.
Kv2.1 membrane corrals: Novel regulators of K + channel function and trafficking Michael Tamkun Program in Molecular, Cellular and Developmental Neuroscience.
Sub-diffraction-limit imaging by Stochastic Optical Reconstruction Microscopy (STORM) Michael J. Rust, Mark Bates, Xiaowei Zhuang Harvard University Published.
Optical trapping of quantum dots in air and helium gas KAWAI Ryoichi Ashida Lab. 2013/10/30 M1 colloquium.
The four units of the Ca 2+ signalling network Nature Rev. Mol. Cell Biol. 1, (2000) Speed Amplitude Spatio-temporal pattern.
Tracking Membrane Receptor Dynamics Using Quantum Dot-labeled Ligands and Quantitative Fluorescence Microscopy Diane Lidke UK-German Frontiers of Science.
Single-Molecule Fluorescence Blinking and Ultrafast Dynamics in Semiconductor and Metal Nanomaterials C. T. Yuan, P. T. Tai, P. Yu, D. H. Lee, H. C. Ko,
Digital two photon microscopy for multiple fast signals acquisition Laboratory of Advanced Biological Spectroscopy (L.A.B.S.) University of Milan - Bicocca.
Final project – Computational Biology RNA Quantification מגישים: מיכל סימון חיים בן שימול בהנחיית: יהודה ברודי ד"ר ירון שב-טל.
Quantum Super-resolution Imaging in Fluorescence Microscopy
Spatiotemporal Image Correlation Spectroscopy (STICS) Theory, Verification, and Application to Protein Velocity Mapping in Living CHO Cells Benedict Hebert,
Measuring Fluorescence Resonance Energy Transfer in vivo
Volume 94, Issue 1, Pages (January 2008)
Volume 89, Issue 2, Pages (August 2005)
Volume 96, Issue 1, Pages (January 2009)
Bin Wu, Jeffrey A. Chao, Robert H. Singer  Biophysical Journal 
K-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics  David L. Kolin, David Ronis,
Dual Modes of Cdc42 Recycling Fine-Tune Polarized Morphogenesis
Volume 93, Issue 2, Pages (July 2007)
Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level
Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation  Petra Schwille, Ulrich Haupts,
Volume 93, Issue 9, Pages (November 2007)
Single Molecule Imaging of Green Fluorescent Proteins in Living Cells: E-Cadherin Forms Oligomers on the Free Cell Surface  Ryota Iino, Ikuko Koyama,
The Mobility of Phytochrome within Protonemal Tip Cells of the Moss Ceratodon purpureus, Monitored by Fluorescence Correlation Spectroscopy  Guido Böse,
Volume 110, Issue 4, Pages (February 2016)
Shohei Fujita, Takuya Matsuo, Masahiro Ishiura, Masahide Kikkawa 
Alex J. Smith, Alan S. Verkman  Biophysical Journal 
Educated natural killer cells show dynamic movement of the activating receptor NKp46 and confinement of the inhibitory receptor Ly49A by Elina Staaf, Per.
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Aleš Benda, Yuanqing Ma, Katharina Gaus  Biophysical Journal 
Hiroshi Makino, Roberto Malinow  Neuron 
Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells 
Volume 103, Issue 8, Pages (October 2012)
Michiel W.H. Remme, Máté Lengyel, Boris S. Gutkin  Neuron 
Volume 104, Issue 5, Pages (March 2013)
Volume 78, Issue 4, Pages (May 2013)
Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation
Volume 97, Issue 2, Pages (July 2009)
Francesca Pennacchietti, Travis J. Gould, Samuel T. Hess 
V. Vetri, G. Ossato, V. Militello, M.A. Digman, M. Leone, E. Gratton 
Analysis of β1- (A–E) and β2- (F–J) AR oligomerization and lateral mobility by single-molecule TIRF-M. Analysis of β1- (A–E) and β2- (F–J) AR oligomerization.
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 94, Issue 7, Pages (April 2008)
Dual Modes of Cdc42 Recycling Fine-Tune Polarized Morphogenesis
Volume 112, Issue 8, Pages (April 2017)
Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution  Sander Verbrugge, Lukas C. Kapitein, Erwin.
Membrane Tethered Delta Activates Notch and Reveals a Role for Spatio-Mechanical Regulation of the Signaling Pathway  Yoshie Narui, Khalid Salaita  Biophysical.
3D Protein Dynamics in the Cell Nucleus
Volume 100, Issue 7, Pages (April 2011)
Biocompatible Quantum Dots for Biological Applications
Volume 89, Issue 2, Pages (August 2005)
Vimentin regulates intracellular trafficking in B cells.
Volume 95, Issue 11, Pages (December 2008)
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Super-resolution Microscopy Approaches for Live Cell Imaging
Volume 27, Issue 5, Pages (March 2017)
Dario Maschi, Vitaly A. Klyachko  Neuron 
Volume 111, Issue 6, Pages (September 2016)
Volume 83, Issue 5, Pages (November 2002)
Volume 111, Issue 4, Pages (August 2016)
Volume 114, Issue 3, Pages (February 2018)
Image cross-correlation analysis reveals the emergence of a dynamic steady state actin distribution in the minimal cortex. Image cross-correlation analysis.
Ruth D. Taylor, Martin Heine, Nigel J. Emptage, Laura C. Andreae 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Volume 113, Issue 10, Pages (November 2017)
Volume 115, Issue 12, Pages (December 2018)
The Mobility of Phytochrome within Protonemal Tip Cells of the Moss Ceratodon purpureus, Monitored by Fluorescence Correlation Spectroscopy  Guido Böse,
Presentation transcript:

Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, (1976) ICS: D cm 2 s -1

Diffusing Population: 2D System Simulation: =10 spatial = -1 = ± 0.03 temporal = g(0,0,0) -1 = ± 0.01 Autocorrelation Function Amplitude: Number Density Simulation: D = 0.01  m 2 s -1 ; =10

Diffusing Population: 2D System D 2D = ±  m 2 s -1 Best Fit with 2D Diffusion Model Simulation: D = 0.01  m 2 s -1 ; =10

Flowing Population & Diffusing Population 2D Simulation: diff =5 flow =5 spatial = -1 = ± 0.03 temporal : diff =4.9 ± 0.3 flow =5.1 ± 0.3 Autocorrelation Function Amplitude: Number Density Simulation: D = 0.01  m 2 s -1 ; diff =5 |v| =  m s -1 ; flow =5

Flowing Population & Diffusing Population 2D D 2D = ±  m 2 s -1 |v| = ±  m s -1 Best Fit with 2D Two population Diffusion & Flow Model Simulation: D = 0.01  m 2 s -1 ; diff =5 |v| =  m s -1 ; flow =5

2-Photon ICS on Living Cells 10  m CHO Cell:  Actinin/EGFP Plated on Fibronectin Two-photon fluorescence microscopy 7.5 min 37 °C Quantify Dynamics & Clustering…

2-Photon ICS on Living Cells 10  m Region 1 64x64 pixels Diffusion & Flow & Immobile 3 Populations D 2D = ±  m 2 s -1 |v| = 1.12 ± 0.07  m min -1 10% Immobile Diff = 2.6 ± 0.2  m -2 flow = 0.33 ± 0.04  m -2 Immobile = 0.34 ± 0.03  m -2

2-Photon ICS on Living Cells 10  m Region 2 128x128 pixels Diffusion & Immobile 2 Populations D 2D = 4.7± 0.3 x10 -4  m 2 s -1 21% Immobile Diff = 7.6 ± 0.3  m -2 Immobile = 2.0 ± 0.2  m -2

Transport Map for  -actinin in a Living Cell 10  m Fraction Immobile Fraction Diffusing Fraction Flowing 10 min Diffusion Dist. 10 min Flow Dist. Wiseman et al. Journal of Cell Science 117, , 2004 Highlighted in Nature Reviews Mol. Cell Biol. Vol 5, 953, 2004

2P-Image Cross-Correlation Spectroscopy (ICCS) t=0t=1t=2t=n Biological Sample Auto1Auto2Cross Temporal Correlation Spatial Correlation Wiseman et al., J. Microscopy 200, (2000)

Temporal Two-photon ICCS  Actinin - CFP  5 Integrin-YFP 10  m 2-Photon Imaging: 10 min,  t = 5s, 3 hr after plating CHO-K1 Cells on 10  g/mL FN Ex. 880 nm Em. 485 & 560 nm 2D Diffusion2D Flow Crosstalk Corrected

Spatio-Temporal Image Correlation Spectroscopy Calculate r 11 ( , ,  )  Central Peak is r 11 (0,0,  ) t=0 t=1 t=2 t=3 r 11 ( , ,  ) r 11 (0,0,  )    Hebert et al. Biophys. J (2005)

Full Space Time Correlation on Living Cells Directed Flow of  -actinin at the basal membrane Hebert et al. Biophys. J (2005) Raw Data Immobile Filtered r(0,0,  ) Correlation Peak Tracking i) ii) Δt=15s 45s 75s 105s 135s A) B) C) 1 μm r(  ) 

Vector Maps of  -actinin MEF Cell TIRF Microscopy Time 100 s with Images sampled at 0.1 Hz Dr. Claire Brown and Ben Hebert

Vector Maps of  -actinin 0 μm/min 9 μm/min 5 μm 0 s2.8 s1.5 s r(  ) r(  ) Ff Inverse relationship b/w retrograde flow & protrusion speed (similar to actin)

Quantum Dots…Nanoparticles Photostable…Different sizes…Different Colours Colored Marker Tags for Molecules CdSe Core ZnS Cap Surface Functionalized Quantum Dot: Semiconductor Materials 10 nm Silicon &Germanium Based Quantum Dots

Particle Tracking of QD Labeled AMPA Receptors Richard Naud (Wiseman Group) with Prof. Paul DeKoninck Laval University 20  m Rat Purkinje neuron Dendritic Spine and Synapse

‘Off’ state ‘On’ state (CdSe)ZnS – Streptavidin (QD605) TIRF Illumination CCD Detection 50ms Integration Time 2000 Frames Nirmal et al. Nature(London) (1996) But…Quantum Dots Blink! See Bachir et al. JAP 99 (2006) Affects ICS measurements Single Dot i(t) trace

Some New Things: kICS Point source fluorescence emitters Image series 2D Fourier transform of images k-space time correlation function Is This Just another Acronym? No! k-space Correlation has distinct advantages… For Photobleaching and Blinking of Fluorophores Special Thanks to Prof. David Ronis See Kolin et al. Biophysical Journal (2006)

Residuals Intercept Photophysics Slope Transport Properties Some New Things: kICS Transport Coefficients Independent of Photophysics Blinking or Photobleaching!

Determine the slopes for each value of τ, plot them as a function of τ : Residuals Intercept Slope Some New Things: kICS  D independent of  o No non-linear Curve fitting

Slope kICS Live cell measurement  5 integrin For a given :

Conclusions Fluctuations Contain Information about Molecules Fluctuation Size…Concentrations/Oligomerization Fluctuation Time…Dynamics/Kinetics FCS…Temporal Analysis of Fluctuations Image Correlation…Space & Time Analysis Quantum Dots…Promising…but not perfect!