1 Water Quality of Potholes in Agricultural Landscapes of East-Brandenburg (Germany) Centre for Agricultural Landscape and Land Use Research (ZALF) Thomas.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Reactions in Aqueous Solutions Chapter 7
Solubility and Ionic Equations
A. Write skeleton equations
Year 12 What you should know already
The Joy of Balancing Equations. What we already know… Coefficient 2CaCl 2 The 2 tells you that there are 2Ca and 4Cl CaCl 2 Subscript The little two tells.
Advanced Piloting Cruise Plot.
Oxidation Numbers   HV2O4-  V6+
1.HCl = 3.0 – 2.1 = 0.9: dipole-dipole, London. H 2 O = 3.5 – 2.1 = 1.4: hydrogen bonding (H with N, O, or F), London. NaCl = 3.0 – 0.9 = 2.1: ionic, London.
1 Chapter 40 - Physiology and Pathophysiology of Diuretic Action Copyright © 2013 Elsevier Inc. All rights reserved.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
HKCEE Chemistry Volumetric Analysis &
ELECTROCHEMISTRY Chapter 20
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
Chemical Reactions Honor’s
0 - 0.
Solutions Solute – what is dissolved
2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt ShapesPatterns Counting Number.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Chapter 5: Introduction to Reactions in Aqueous Solutions
Unit 20 Oxidation and reduction Activity 20.1 Investigating redox reactions Reference in textbook: Section S.
o C - steam 3 Water consists of an oxygen atom bound to two hydrogen atoms by two single covalent bonds. – Oxygen has unpaired & paired electrons.
Chapter 9 Chemical Change
1 Hydrogeomorphic Pothole Types in Agricultural Landscapes of East- Brandenburg Centre for Agricultural Landscape and Land Use Research (ZALF) Thomas Kalettka.
ABC Technology Project
Beryllium metal (has no charge at first)
Types of Chemical Reactions
© S Haughton more than 3?
VOORBLAD.
CHAPTER 10 Reactions in Aqueous Solutions I: Acids, Bases & Salts
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
1. What does this symbol mean?
1. What does this symbol mean? 2. Sodium has this hazard symbol - what precautions should you take when using it?
IB topic 9 Oxidation-reduction
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
1 First EMRAS II Technical Meeting IAEA Headquarters, Vienna, 19–23 January 2009.
© Copyright R.J. Rusay Aqueous Reactions Dr. Ron Rusay Fall 2007.
© Copyright R.J. Rusay Aqueous Reactions Dr. Ron Rusay.
Aqueous Reactions Dr. Ron Rusay.
Addition 1’s to 20.
25 seconds left…...
Week 1.
Number bonds to 10,
We will resume in: 25 Minutes.
Chapter 12 Solutions Copyright © 2008 by Pearson Education, Inc.
Figure Essential Cell Biology (© Garland Science 2010)
Chemical Equations Preparation for College Chemistry Columbia University Department of Chemistry.
© 2006, François Brouard Case Real Group François Brouard, DBA, CA January 6, 2006.
Dr. Bajnóczy Gábor Tonkó Csilla WASTEWATERS CONTAINING PLANT NUTRIENTS BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF CHEMICAL AND ENVIRONMENTAL.
Chuck Hansen  Dissolved Inorganic Phosphorus (DIP) aka Soluble Reactive Phosphorus (SRP)  Disolved Organic Phosphorus (DOP)  Particulate Phosphorus.
Methane CH4 Greenhouse gas (~20x more powerful than CO2)
FACTORS CONTRIBUTING TO THE INTERNAL LOADING OF PHOSPHORUS FROM ANOXIC SEDIMENTS IN SIX MAINE (USA) LAKES Bjorn Lake Doctoral Student Civil and Environmental.
Reducing phosphorus concentration in rivers: wetlands not always to the rescue Ben Surridge, Catchment Science Centre Louise Heathwaite, Lancaster Environment.
Balancing Redox Reactions. Steps: 1.Assign oxidation numbers 2.Write half reactions 3.Balance electrons to determine coefficients needed.
Reactions Reference. Solubility Rules 1.All nitrates, acetates, and chlorates are soluble. 2.All chlorides, bromides, and iodides are soluble except for.
Electrolytes Pre lab. Electrolytes: a quick review Electrolytes form ions in solution. Ions allow water to conduct electric current Three types of electrolytes:
GIS Mapping.
ASPECTS OF AQUATIC REDOX CHEMISTRY
Presentation transcript:

1 Water Quality of Potholes in Agricultural Landscapes of East-Brandenburg (Germany) Centre for Agricultural Landscape and Land Use Research (ZALF) Thomas Kalettka 1 & Catrin Rudat 2 1 ZALF, Institute for Hydrology, 2 Umweltplan Stralsund Gmbh,

2

3 Dynamics of water quality parameters of potholes - Electric conductivity - Electrolyte poor potholes: B_BAP, E_20, E_19 Electrolyte rich potholes: E_6, B_205, L_17f

4 very softly 0-4°dH softly: 4-8°dH moderate hard:8-12°dH fairly hard: 12-18°dH hard: 18-30°dH very hard: >30°dH Water quality parameters of potholes - Electrolyte pollution -

5 Dynamics of water quality parameters of potholes - bioproduction and matter dynamics - Polytrophic pothole B-BFA Characteristics of potholes eutrophication : - summer period: dense hydrophyte stands with reduced species number - winter period: maximum of algae - cyclic reduced oxygen: internal matter loading from the sediment

6 Correlation between phytoplancton and macrophytes Macrophytes dominant Macrophytes not dominant

7 Analysis of bioavailability of phosphorus from sediments Extraction- solution Extraction time [h] / temp. [°C] Bindung forms of P NH 4 Cl (1 M)0,5 / 20-25SRP / NRPGelöste, unmittelbar verfügbare Phosphate = im Interstitialwasser und labil an Oberflächen gebunden BD (0,11 M)0,5 / 40SRP NRP Reduktant lösliche anorg. Phosphate = an Fe- und Mn- Hydroxide adsorptiv gebunden: Fe(OH) 3, FeOOH, MnOOH An Fe- und Mn-Hydroxide gebundener org. P NaOH (1 M)16 / 20-25SRP NRP Baselösliche Phosphate = an Metalloxide von Fe und Al gebunden und gegen OH - austauschbar (Fe 2 O 3, Al 2 O 3 ) P in Mikrorganismen, Detritus und Huminstoffen HCl (0,5 M)16 / 20-25SRP NRP Säurelösliche Phosphate = Ca- u. Mg-P, Apatit-P Säurelabiler org. P, hydrolysierter org. P Residual-PTPSchwer abbaubare bzw. nicht verfügbare Phosphate = Refraktärer überwiegend org. P SRP = Soluble Reactive PNRP = Not Reactive P (NRP= TP-SRP)TP = Total P bioavailabilitya) direct available PSRP of the NH4Cl-extract of Pb) reductive available PSRP of the BD-extract c) total available Psum SRP of the extracts d) not available Presidual-P

8 1: B-BAP; 2: B-II/8; 3: B-KP; 4: E-19; 5: L-18b; 6: E-6; 7:E.20; 8: L-18; 9: B-BFA; 10: B-207c; 11: B-203 Internal eutrophication by release of phosphorus from sediments increasing of redox sensitive potential for P-release Redox soluble Fe(III) bound phosphorus in the sediment Classification of the eutrophication potential of aquatic pothole sediments Matter loding dispositionBD-SRP (upper 1 cm) [mg/g DM] Redox sensitive eutrophication potential high to very high (4-6)> 1.0very high moderate (2-4) moderate to high low (0-2) low very low (<0)0-0.1very low

9 VariablesFactor 1Factor 2 Electric Conductivity0,95 0,09 SO40,87 -0,27 Cl0, Ca0,98 -0,01 Mg0,96 0,01 Total water hardness0,97 0,05 pH 0,08 0,82 O2 0,15 0,91 TP 0,14 -0,64 Explained Varianz (Own value) 5,362,00 Share of total varianz % 602 Extraction: Mean components; factor rotation: varimax; Results: Factor loadings of variables marked loadings 0,65 Hydrochemical main parameters of potholes in agricultural landscapes High, significant correlation (p < 0,05) at 9 from 16 Parameters PCA-Ordination plot of extracted variables in correlation to 39 potholes Group 1: P-rich Mineral-poor Group 2: P-poorMineral-poor Group 3:P-richMineral-rich Group 4:P-poorMineral-rich

10 Wasser quality (trophic level) of potholes in agricultural landscapes (modified method by Klapper 1992) Lietzen (n=15), Eggersdorf (n=15), Müncheberg incl. Eggersdorf (n=59) (2,5-2,9 = eutroph; 3,0-3,4 = high eutroph; 3,5-3,9 = polytroph; 4,0-4,4 = high polytroph) low trophic level within arable land = low matter loading disposition big potholes with wide buffer strips (high buffer capacity) small potholes within small slightly rolling catchment (low soil erosion) lacking of input from drainages soil ramparts at the upper shore (high buffer capacity)

11 Correlation between trophic level and matter loading disposition of potholes n = 29; r = 0,79; significant p < 0,001 Assessment of matter loding disposition (MLD) by score system: MLD = Total (matter loading factors) – Total (buffer capacity of pothole) Sum of points catchment area (1-5) catchment relief (1-5) input by drainage (1-3) input by water erosion (1-4) buffer strip width (1-5) shore width (1-5) soil ramparts at shore top (1-5) pothole area (1-5)

12 Trophic level Parameters oligo- trophic meso- trophic weak eutrophic high eutrophic weak polytr. high polytr. hyper- trophic 1,0-1,41,5-2,52,5-2,93,0-3,43,5-3,94,0-4,44,5-5,0 Nutrients Spring, MV 3-4, after melting of ice cover [mg/l] a) SRP b) TP c) anorganic N (if TN/TP < 7) </= 0,005 </= 0,015 </= 0,3 </= 0,015 </= 0,045 </= 0,5 </= 0,2 </= 0,3 </= 1,0 </= 1,2 </= 1,5 > 1,2 > 1,5 Summer, MW 6-9 [mg/l] a) SRP b) TP c) anorganic N (if TN/TP < 7) </= 0,002 </= 0,015 </= 0,01 </= 0,005 </= 0,04 </= 0,03 </= 0,1 </= 0,3 </= 0,1 </= 0,5 > 0,5 Bioproduction Chl. A, MV 3-11, after melting of ice cover [mg/l] Only if macrophytes not dominant 1*</= 3</= 10</= 40</= 60> 60 Macrophytes/filamentous green algae 2* Visible depth, MV 3-11 [m] After melting of ice cover, use only if water level is deep enough for whole year ->/= 4>/= 1,5>/= 1,0>/= 0,5>/= 0,2< 0,2 Water quality classification of potholes (modified after Klapper 1992) 1* - Sum coverage of macrophytes + filamentous green algae </= 50 % 2* - Coverage % of whole surface water area with litoral charakter (maximum of vegetation period), Trophic level indication by species combinations, use only if sum of coverage of macrophytes/filamentous green algae >/= 25 %

13 Species nameTrophic level N*NO3NH4PI° Floating covers / pleustophytes Lemna gibba3-48rich Lemna minor2, ,0 Spirodela polyrhiza(2)-36rich5,0 Wolffia arrhiza36 Suspendes mats / pleustophytes Lemna trisulca(2)-3-(4)5moderate Ceratophyllum submersum(2)-3, 47 Ceratophyllum demersum(2)-3, 48rich Fadengrünalgen3-4 Riccia fluitans2-2,9poormoderate Utricularia vulgaris2-34poor- moderate Rooted floating leaf lawn / rhizophytes Nuphar lutea Potamogeton natans1-352,5 Ranunculus aquatilis36 Polygonum amphibium2-3-44not rich Rooted submersed plants /rhizophytes Potamogeton crispus3-454,5 Potamogeton acutifolius36 Myriophyllum spicatum2,5-3-47not rich3,0 Hottonia palustris2-34not high Trophic level indication of standing waters by hydrophytes (literature) N* = Ellenberg et al. (1991) I° = Melzer (1988)

14 level Lemna gibba Lemna minor Lemna trisulca Spirod. polyrhiza Cer. submersum Cer. demersum Utric. vulgaris Fadengrünalgen Riccia fluitans Nuphar luta Nymphaea alba Pol. amphibium Pol. natans Pol. crispus Pot. acutifolius Chara fragilis 4,5Cer. submersum Fadengrünalgen ,0Lemna gibba ,0Cer. submersum ,5Lemna minor Spirodela polyrhiza ,5Wolffia arrhiza ,5Cer. submersum ,0Cer. submersum ,0Lemna minor Spirodela polyrhiza ,0Myr. Spicatum Nuphar lutea ,0Ran. aquatilis ,0Hottonia palustris Tro- phic Dominant species *coverage [%] Accompanying species *max. coverage [%] Preliminary trophic level indikation of potholes by hydrophytes *Coverage in % of whole water area with litoral charakter (maximum May to September)

15 Correlation between matter loadings and biodiversity of macrophytes Problem: Shortage of weak eutrophic reference sites in the agricultural landscape n = 32; r =0,59; significant p < 0,001n = 32; r = 0,64; significant p < 0,001 n = 32; r = 0,38; significant p < 0,02n = 32; r = 0,19; nicht significant

16 Correlation between water quality and surface sediment pollution n = 22; r = 0,76; significant p < 0,001 n = 22; r = 0,66; significant p < 0,005 n = 22; r = 0,54; significant p < 0,01 Problems: influence of soil erosion and wet-dry cycle on mud formation (silicate muds) shortage of weak eutrophic reference sites in the agricultural landscape

Influence of runoff in winter period on trophic level of potholes in agricultural landscapes with middle to high matter loading disposition 1 = low runoff3 = snowmelt, high runoff, frozen soil 2 = rain, high runoff, soil not frozen4 = snow/rain, thawing soil, middle runoff