The lunar Askaryan technique with the Square Kilometre Array Clancy James, Erlangen Centre for Astroparticle Physics (ECAP) 34th ICRC, The Hague, Netherlands.

Slides:



Advertisements
Similar presentations
SKADSMTAvA A. van Ardenne SKADS Coördinator ASTRON, P.O. Box 2, 7990 AA Dwingeloo The Netherlands SKADS; The.
Advertisements

The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
July 29, 2003; M.Chiba1 Study of salt neutrino detector for GZK neutrinos.
Probing the field of Radio Astronomy with the SKA and the Hartebeesthoek Radio Observatory: An Engineer’s perspective Sunelle Otto Hartebeesthoek Radio.
Milky Way over 21CM array (Gu Junhua) The Tianshan Radio Experiment for Neutrino Detection Olivier Martineau-Huynh NAOC G&C lunch talk May 28, 2014.
September 16-19, 2008 Hamburg 2008 Olaf Scholten For the NuMoon collaboration KVI, Groningen.
The NuMoon experiment: first results Stijn Buitink for the NuMoon collaboration Radboud University Nijmegen 20 th Rencontres de Blois, 2008 May 19.
LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
Radio Telescopes Large metal dish acts as a mirror for radio waves. Radio receiver at prime focus. Surface accuracy not so important, so easy to make.
Tuning in to UHE Neutrinos in Antarctica – The ANITA Experiment J. T. Link P. Miočinović Univ. of Hawaii – Manoa Neutrino 2004, Paris, France ANITA-LITE.
The National Science FoundationThe Kavli Foundation Mapping the Ultra-high--energy Cosmic-ray Sky with the Pierre Auger Observatory Vasiliki Pavlidou for.
Heino Falcke Radboud University, Nijmegen ASTRON, Dwingeloo
PERSPECTIVES OF THE RADIO ASTRONOMICAL DETECTION OF EXTREMELY HIGH ENERGY NEUTRINOS BOMBARDING THE MOON R.D. Dagkesamanskii 1), I.M. Zheleznykh 2) and.
The LOFAR Cosmic Ray KSP
Steve Torchinsky SKADS Science Overview Lisbon 2007 Jan 12 SKADS Science Overview.
8-Jan-2008ASPERA R&D Lisbon AMvdB1 R&D for Radio Detection Ad M. van den Berg R&D and Astroparticle Physics meeting 8 January 2008.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
The Square Kilometre Array Department of Astronomy and Atmospheric Sciences, Kyungpook National University 김경묵, 박진태, 방태양, 신지혜, 조창현, 정수진, 현화수 Survey Science.
1 100 SKA stations (2020 ) Projets avec SKA. 2 Telescope Project (~2020) for a giant radiotelescope in the centimetre-metre range one square kilometre.
Design and status of the Pierre Auger Observatory J. C. Arteaga Velázquez 1, Rebeca López 2, R. Pelayo 1 and Arnulfo Zepeda 1 1 Departamento de Física,
ARIANNA: Searching for Extremely Energetic Neutrinos Lisa Gerhardt Lawrence Berkeley National Laboratory & University of California, Berkeley NSD Monday.
Future Directions Radio A skaryan U nder ice R adio A rray Hagar Landsman Science Advisory Committee meeting March 1 st, Madison.
EVLBI and the Australian SKA Pathfinder (ASKAP) Prof. Steven Tingay Curtin University of Technology Perth, Australia 7th eVLBI workshop SHAO, 2008 June.
Lunatics - those who search for lunar ticks Developments in Nanosecond Pulse Detection Methods & Technology UHE Neutrino Detection using the Lunar Cherenkov.
Low frequency radio- emission associated with UHE cosmic rays KALYANEE BORUAH Physics Department, Gauhati University.
UCL Xmas 2006 : Dec 18 1 From the Tevatron to the Zevatron Mark Lancaster Simon Bevan, Amy Connolly, Ryan Nichol, Dave Waters.
Spencer Klein, LBNL & UC Berkeley n GZK Neutrinos n Radiodetection The moon as a cosmic target n ANITA – floating over Antarctica n Future experiments.
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Status and first results of the KASCADE-Grande experiment
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
0 April 22, 2013 A. Romero-Wolf Interferometry in UHE particle astrophysics Andres Romero-Wolf Jet Propulsion Laboratory, California Institute of Technology.
Ionospheric propagation effects for UHE Neutrino Detection using the lunar Cherenkov technique Dr Rebecca McFadden 1,2 Prof Ron Ekers 2 Justin Bray 2,3.
RASTA: The Radio Air Shower Test Array Enhancing the IceCube Observatory M. A. DuVernois University of Wisconsin IceCube Research Center for the RASTA.
Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique O. Scholten 2 M. Mevius 2 S. Buitink 2 J. Bray 3 R. Ekers 3 1 ASTRON Netherlands.
M.Chiba_ARENA20061 Measurement of Attenuation Length for Radio Wave in Natural Rock Salt and Performance of Detecting Ultra High- Energy Neutrinos M.Chiba,
Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans.
Prof. Steven Tingay (ICRAR, Curtin University) Workshop on East-Asian Collaboration on the SKA Daejeon, Korea, November 30 – December 2, 2011 A long baseline.
The Square Kilometre Array Dr. Minh Huynh (International Centre for Radio Astronomy Research and SKA Program Development Office) Deputy International SKA.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
Evgeniya Kravchenko XI Russian-Finnish Symposium on Radio Astronomy October 19, 2010 Pushchino, Russia Ultra High Energy Neutrinos and radio method of.
RICE: ICRC 2001, Aug 13, Recent Results from RICE Analysis of August 2000 Data See also: HE228: Ice Properties (contribution) HE241: Shower Simulation.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
South Pole Astro April 4, 2011 Tom Gaisser1 125 m Cosmic-ray physics with IceCube IceTop is the surface component of IceCube as a three-dimensional cosmic-ray.
Olivier Deligny for the Pierre Auger Collaboration IPN Orsay – CNRS/IN2P3 TAUP 2007, Sendai Limit to the diffuse flux of UHE ν at EeV energies from the.
Square Kilometre Array eInfrastructure: Requirements, Planning, Future Directions Duncan Hall SPDO Software and Computing EGEE 2009.
Jeong, Yu Seon Yonsei University Neutrino and Cosmic Ray Signals from the Moon Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383.
The Lunar Cherenkov Technique: Answering the Unanswered Questions Clancy W James Radboud University Nijmegen Presented at ARENA, Nantes, 2010 LUNASKA NuMoon.
Detecting Ultra High Energy Neutrinos with LOFAR M.Mevius for the LOFAR NuMoon and CR collaboration.
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
Arnaud Bellétoile SUBATECH NANTES Manchester, 19/07/07 CODALEMA Collaboration Radio-detection of UHECR with the CODALEMA experiment for the CODALEMA collaboration.
LUNASKA UHE Neutrino Flux Limits - From Parkes Onwards The Lunar Cherenkov Technique – From Parkes Onwards R. Protheroe R. Crocker C. James D. Jones R.
Lunar Radio Cerenkov Observations of UHE Neutrinos
Detecting UHE cosmic-rays and neutrinos hitting the Moon
LUNASKA The Directional Dependence of the Lunar Cherenkov Technique in Regards to UHE Neutrino Detection -C.W. James (University of Adelaide) IF we want.
Flux Limits for Ultra-High Energy Neutrinos
Topics The case for remote radio detection of neutrinos
Ron Ekers CSIRO Ginzburg Conference on Physics
“Lunar UHE Neutrino Astrophysics with the Square Kilometre Array”
Cosmic ray and Neutrino Physics
Pierre Auger Observatory Present and Future
David Saltzberg (UCLA)
for the Detection of UHE Cosmic Rays and Neutrinos
Presentation transcript:

The lunar Askaryan technique with the Square Kilometre Array Clancy James, Erlangen Centre for Astroparticle Physics (ECAP) 34th ICRC, The Hague, Netherlands

The Lunar Askaryan Technique 2 Unknown cosmic accelerators AGN? GRB? CenA? interacts immediately CR * ϒ CMB penetrates ~100 km ν (GZK) ν (direct) 100 MHz: broad, Weaker emission [6] ~3m ~10cm C.W. James, 34th ICRC, The Hague, NL

History of lunar experiments ●Technically feasible ●But just one problem… 3 NuMoon Westerbork 2008 [6] LOFAR UHEP LaLUNA Lovell 2010 GLUE Goldstone [4] RESUN VLA [8] LUNASKA ATCA [5] Parkes 1995 [3], RAMHAND Kalyazin [ 7] C.W. James, 34th ICRC, The Hague, NL

Limits to UHE particles fluxes from past experiments ●Current limits on neutrinos only competitive at eV (NuMoon) ●Sensitivity not enough to detect UHE CR flux 4 S. ter Veen et al (2010) [10] J. Bray et al. (2014) [13] C.W. James, 34th ICRC, The Hague, NL

Simplified version ●Known/expected physics (CR flux) ●Potential physics (exotic) ●Lunar Askaryan 5 S. ter Veen et al (2010) [10] J. Bray et al. (2014) [13] XKCD ‘what if?’ #13 C.W. James, 34th ICRC, The Hague, NL

SKA - concept ●A giant radio-telescope array with 1 km 2 collecting area ●Frequency range: 50 MHz-20 GHz: C.W. James, 34th ICRC, The Hague, NL6 Low-frequency aperture array (50 – 350 MHz) Mid-frequency aperture array ( MHz) Dishes (>700 MHz) Image simulation credit:

SKA – Timelines ●Phase 1 ( ) ● SKA1 LOW: 130,000 dipole antennas (Australia) ● SKA1 MID: m dishes (South Africa) ●Phase 2 (completion ~2030) ● SKA1 LOW: x4-10 (approx) ● SKA1 MID: x4-10 (approx) ● +Mid-frequency aperture array 7 South Africa (Meertkat pathfinder) Australia (ASKAP pathfinder) C.W. James, 34th ICRC, The Hague, NL

Some superlatives ●Final SKA performance: ● Huge effective area ● Broad bandwidths ● Low-RFI environment ●Science potential ● Cosmic magnetism ● Galaxy evolution ● Pulsars & Grav Waves ● Epoch of Reionisation ● … ●How good will this be with the lunar Askaryan technique? 8 C.W. James, 34th ICRC, The Hague, NL

Limits on UHE neutrinos with 1000 hr ●Strong constraints on remaining top-down models ●Not sensitive to GZK – leave this to ARA & ARIANNA 9C.W. James, 34th ICRC, The Hague, NL

Sensitivity to UHECR ●Phase 2: ● Aeff >100,000 km 2 sr at eV ● 50 UHE CR yr -1 at E>56 EeV 10C.W. James, 34th ICRC, The Hague, NL

Coverage ●Instantaneous sensitivity of the SKA-Moon detector ●Sources in range: ● Cen A ● M87 ● Sgr A* ● … ●Direction reconstruction? ● None yet– but we will measure polarisation, amplitude, and position on the Moon. How is this related to the cosmic ray origin? 11C.W. James, 34th ICRC, The Hague, NL

Angular resolution ●Instantaneous sensitivity of the SKA-Moon detector ●Signal strength: 10σ (±1) ●Polarisation: 5 o (asin 1σ/10σ) ●Inner 10km : 0.5’ at 100 MHz 12C.W. James, 34th ICRC, The Hague, NL ●‘Resolution’: ~5 o region ●Any explicit reconstruction should do better!

Clear science goal ●Measure an unprecedented number of UHECR ●Obtain ‘sufficient’ resolution to resolve UHECR sources ●5 o is not great, but… ● Cen A is ~5 o x5 o ● Virgo cluster is O~5 o -10 o diameter ● Bending of protons: ~3 o ●Caveats: ● No composition ● Energy resolution? 13C.W. James, 34th ICRC, The Hague, NL Image courtesy L. Feain & ATNF CSIRO Image courtesy C. Mihgos & EUSO

14 Getting it done: ●The SKA High Energy Cosmic Particles Focus Group (lunar + EAS) ●SKA science chapter: ● J. Bray et al, Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array, arXiv (2014) ●Cosmic 2015: May 5 th -7 th 2015 ● Meeting with SKA engineers at Jodrell Bank, UK ●Engineering requirements: J. Bray (ID 533) ● Engineering change proposal submitted to SKAO for Phase 1 ● Good news: buffer capability and beamforming already accepted! C.W. James, 34th ICRC, The Hague, NL14

Conclusions ●Lunar Askaryan Technique with the SKA: ● Limit top-down neutrino models ● Detect large numbers of UHECR ● Enable directional studies ●Status: ● SKA Focus Group formed ● Technical feasibility studied ● Science promising! ● Still needs to be accepted by the SKA organisation 15C.W. James, 34th ICRC, The Hague, NL

In Memoriam ●Raymond J. Protheroe: ● Passed away Wednesday July 1 st 2015 ● Renowned theoretical astrophysicist ● LUNSKA co-founder ● PhD supervisor ● Friend 16C.W. James, 34th ICRC, The Hague, NL LUNASKA

BACKUP

The Askaryan effect ●Particle cascades in a medium ● Cascades in medium entrain atomic electrons ● Shower front builds up negative charge excess ● Charge excess radiates coherently CR energyEM energyEM particlesExcess e - Shower wake: positive ions A+A+ e-e- e+e+ e+e+ e+e+ e-e- e-e- e-e- e-e- A+A+ Shower front: excess electrons G.A. Askaryan, Sov. Phys. JETP 14 (1962) 441; 48 (1965) C.W. James, 34th ICRC, The Hague, NL

RFI discrimination – results from Parkes ●With SKA: this will be much easier! 19C.W. James, 34th ICRC, The Hague, NL

Example signals (no noise or surface roughness added) ●Neutrinos: absorption in lunar rock (attenuation length ~20m) ●Cosmic rays: interact pointing into the Moon 20C.W. James, 34th ICRC, The Hague, NL

SKA – assumed sensitivities (inc. lunar emission) ●Note: beamforming on the Moon implies we see the full ~220 K lunar emission 21C.W. James, 34th ICRC, The Hague, NL

22 Tentative results: cosmic rays ●10 20 eV hadronic cascade, 10 o angle of incidence, shower max 4.6m after initial point 22C.W. James, ARENA, 9th-12th June, 2014 α=10 o 43 piece shower rough PRELIMINARY (numerical dials still need turning)

References [1] G.A. Askaryan, Sov. Phys. JETP 14, 441 (1962) [2] R.D. Dagkesamanskii, I.M. Zheleznykh, Sov. Phys. JETP Lett. 50, 233 (1989) [3] T.H. Hankins et al, MNRAS 283, 1027 (1996) [4] P. Gorham et al, Phys Rev D 93, (2004) [5] C.W. James et al, Phys Rev D 81, (2010) [6] O. Scholten et al, Atropart.Phys 26 [3] 219 (2006) [7] A. Beresnyak et al, Ast. Reports 49, 127 (2005) [8] T.R. Jaeger et al, Astroparticle Physics 34, 293 (2009) [9] R.E. Spencer et al, Proc. 10 th Eu VLBI Symp., p97 (2010). [10] S. ter Veen et al, PRD 82, (2010) [11] S. Buitink et al., PRD 90, (2014) [12] J. Bray et al., arXiv (2015) 23 SKA-EAS: T. Huege et al, Precision measurements of cosmic ray air showers with the SKA, arXiv (2014) SKA-Lunar: J. Bray et al, Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array, arXiv (2014) C.W. James, 34th ICRC, The Hague, NL