Waste Management (Chapter 24). Chapter Overview Questions  What is solid waste and how much do we produce?  How can we produce less solid waste?  What.

Slides:



Advertisements
Similar presentations
Solid Domestic Waste IB Syllabus 5.5.1, AP Syllabus Ch 21 Personal Waste Audit Trashed video.
Advertisements

“A clever person solves a problem. A wise person avoids it.” Albert Einstein.
Chapter 24 Solid and Hazardous Wastes
Chapter 24 Solid and Hazardous Waste
Solid Waste Management Ahmed A.M. Abu Foul Environmental Department Islamic University of Gaza.
Hazardous waste. Threatens human health or the environment in some way because it is –toxic –chemically active –corrosive –flammable –or some combination.
Solid and hazardous Wastes
APES – Mrs. Soja – Part 1. A.Solid Waste - any unwanted material that is solid  1.The U.S. produces 11,000,000,000 tons per year (4.3 pounds per day)
Solid and Hazardous Waste
Waste Management (Chapter 29).
Chapter 22 Solid and Hazardous Waste. Core Case Study: Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes.
Making the Transition to a Low-Waste Society: A New Vision  Everything is connected.  There is no “away” for the wastes we produce.  Dilution is not.
Waste Chapter 19.
4.5 Pounds of Trash are produced Per Person Per Day Where Does our Trash Go? 27% Recycled 16% Burned 57% Landfilled Nationally: 31% Recycled 69% Landfilled.
Solid and Hazardous Waste Chapter 24. Solid Waste Footprint US = 4.4 lbs per person per day 229 million tons per year.
Environmental Science. This is our independent variable: presence of a liner These items will be studied in relation to our IV: paper, sun chip bag, chip.
Environmental Chemistry Chapter 16: Wastes, Soils, and Sediments Copyright © 2012 by DBS.
SOLID WASTE. Solid Waste Hazardous Waste – poses danger to human health Industrial Waste – comes from manufacturing Municipal Waste – household waste.
WasteSection 3 Section 3: Hazardous Waste Preview Bellringer Objectives Types of Hazardous Waste Resource Conservation and Recovery Act The Superfund Act.
Solid and Hazardous Waste Chapter 21. Core Case Study: Love Canal — There Is No “Away” President Jimmy Carter declared Love Canal a federal disaster area.
Chapter 24 Solid and Hazardous Wastes. Types of Solid Waste  Municipal solid waste  Relatively small portion of solid waste produced  Non-municipal.
Solid and Hazardous Waste Chapter 21 “Solid wastes are only raw materials we’re too stupid to use.” Arthur C. Clarke.
WasteSection 3 Types of Hazardous Waste Hazardous wastes are wastes that are a risk to the health of humans or other living organisms. They may be solids,
Chapter 16 Waste Generation and Waste Disposal.  Refuse collected by municipalities from households, small businesses, and institutions such as schools,
Solid and Hazardous Waste Chapter What Are Solid Waste and Hazardous Waste, and Why Are They Problems?  Concept 21-1 Solid waste represents.
Garbage. We throw away… Enough aluminum to rebuild the country’s commercial airline fleet every 3 months Enough tires each year to encircle the planet.
WasteSection 1 Classroom Catalyst. WasteSection 1 Objectives Name one characteristic that makes a material biodegradable. Identify two types of solid.
Unit 8: Waste Management Section 1: Solid and Hazardous Waste.
Environmental Hazards and Human Health, Part 1. CHEMICAL HAZARDS A hazardous chemical can harm humans or other animals because it may: –Be flammable –Be.
Solid and Hazardous Waste. Solid waste : any unwanted or discarded material we produce that is not a liquid or gas. Municipal solid waste (MSW): produced.
Solid & Hazardous Wastes. Domestic Waste  38 % Paper  18% Yard waste  8% Metals  8% Plastic (20% by volume)  7% Glass  7% Food  14% Miscellaneous.
Chapter 4 Land and Soil Resources
Hazardous Waste Environmental Science Chapter 19 Section 3.
Chapter 23 Solid and Hazardous Wastes
Chapter 21 Solid and Hazardous Waste. Core Case Study: Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes.
Topic 22: Environmental Hazards and Human Health, Part 1.
I. Solid WasteSolid Waste Chapter 19 Section 1. Classroom Catalyst.
Bellringer. Types of Hazardous Waste Hazardous wastes are wastes that are a risk to the health of humans or other living organisms. – They include: solids,
Waste Management Intro video. WASTING RESOURCES Solid waste: any unwanted or discarded material we produce that is not a liquid or gas. –Municipal solid.
Waste Generation and Waste Disposal Chapter 16. Waste Waste – nonuseful products generated within the system throw-away society Municipal Solid Waste.
Chapter 19 Waste Solid Waste A. The Generation of Waste –Solid waste is any discarded solid material –Solid waste included: junk mail to coffee.
Solid and Hazardous Waste G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 24 G. Tyler Miller’s Living in the Environment 14 th Edition.
Waste Generation and Waste Disposal Chapter 16. Chapter Overview Questions  What is solid waste and how much do we produce?  How can we produce less.
Chapter 16 Waste Generation and Waste Disposal.  Refuse = waste (something discarded or worthless)  Refuse collected by municipalities from households,
ACHIEVING SUSTAINABILITY Unit 3-3a Managing Solid Waste.
Municipal 1.5% Sewage sludge 1% Mining and oil and gas production 75% Industry 9.5% Agriculture 13% Solid and Hazardous Waste U.S. Solid Waste Production.
Hazardous Wastes. Hazardous waste discarded solid waste/liquid material - contains 1 or more of listed 39 compounds, catches fire easily, explosive, corrosive.
Waste and Recycling Notes Waste Disposal Read Miller, page 519.
WASTE Solid Waste. Objectives Name one characteristic that makes a material biodegradable. Name one characteristic that makes a material biodegradable.
Composting biodegradable organic waste is a way to recycle the yard trimmings and food wastes that would be sent to a landfill. Composting mimics nature.
Solid Waste. What is solid waste and what are the different types? Industrial Municipal.
Chapter 24 Solid and Hazardous Waste
Chapter Nineteen: Waste
Common method of solid waste disposal.
Waste Generation and Waste Disposal
Lecture (5): Waste treatment and disposal
Chapter 22 Solid Waste/ Recycling
Approaches to Pollution Management
Solid Waste Objective: I will define solid waste and explain how most municipal solid waste is disposed of.
Waste Generation and Waste Disposal
What is planned obsolescence?
Average person produces 1700 lbs of MSW per year
Waste Management (Chapter 29).
Solid and Hazardous Waste
Classroom Catalyst.
Love Canal Between , Hooker Chemical sealed multiple chemical wastes into steel drums and dumped them into an old canal excavation. In 1953, the.
Ch. 19: Waste.
Unit 9: Waste Management
BHS Environmental Science Mr. Walker
Presentation transcript:

Waste Management (Chapter 24)

Chapter Overview Questions  What is solid waste and how much do we produce?  How can we produce less solid waste?  What are the advantages and disadvantages of reusing recycled materials?  What are the advantages and disadvantages of burning or burying solid waste?  What is hazardous waste and how can we deal with it?

Chapter Overview Questions (cont’d)  What can we do to reduce exposure to lead and mercury?  How can we make the transition to a more sustainable low-waste society?

Core Case Study: Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes into steel drums and dumped them into an old canal excavation (Love Canal).  In 1953, the canal was filled and sold to Niagara Falls school board for $1.  The company inserted a disclaimer denying liability for the wastes.

Core Case Study: Love Canal — There Is No “Away”  In 1957, Hooker Chemical warned the school not to disturb the site because of the toxic waste. In 1959 an elementary school, playing fields and homes were built disrupting the clay cap covering the wastes. In 1959 an elementary school, playing fields and homes were built disrupting the clay cap covering the wastes. In 1976, residents complained of chemical smells and chemical burns from the site. In 1976, residents complained of chemical smells and chemical burns from the site.

Core Case Study: Love Canal — There Is No “Away”  President Jimmy Carter declared Love Canal a federal disaster area. The area was abandoned in 1980 (left). The area was abandoned in 1980 (left).

Core Case Study: Love Canal — There Is No “Away”  It still is a controversy as to how much the chemicals at Love Canal injured or caused disease to the residents.  Love Canal sparked creation of the Superfund law, which forced polluters to pay for cleaning up abandoned toxic waste dumps.

WASTING RESOURCES  Solid waste: any unwanted or discarded material we produce that is not a liquid or gas. Municipal solid waste (MSW): produce directly from homes. Municipal solid waste (MSW): produce directly from homes. Industrial solid waste: produced indirectly by industries that supply people with goods and services. Industrial solid waste: produced indirectly by industries that supply people with goods and services.  Hazardous (toxic) waste: threatens human health or the environment because it is toxic, chemically active, corrosive or flammable.

WASTING RESOURCES  Solid wastes polluting a river in Jakarta, Indonesia. The man in the boat is looking for items to salvage or sell.

WASTING RESOURCES  The United States produces about a third of the world’s solid waste and buries more than half of it in landfills. About 98.5% is industrial solid waste. About 98.5% is industrial solid waste. The remaining 1.5% is MSW. The remaining 1.5% is MSW. About 55% of U.S. MSW is dumped into landfills, 30% is recycled or composted, and 15% is burned in incinerators.About 55% of U.S. MSW is dumped into landfills, 30% is recycled or composted, and 15% is burned in incinerators.

Electronic Waste: A Growing Problem  E-waste consists of toxic and hazardous waste such as PVC, lead, mercury, and cadmium.  The U.S. produces almost half of the world's e-waste but only recycles about 10% of it.

INTEGRATED WASTE MANAGEMENT  We can manage the solid wastes we produce and reduce or prevent their production.

Solutions: Reducing Solid Waste  Refuse: to buy items that we really don’t need.  Reduce: consume less and live a simpler and less stressful life by practicing simplicity.  Reuse: rely more on items that can be used over and over.  Repurpose: use something for another purpose instead of throwing it away.  Recycle: paper, glass, cans, plastics…and buy items made from recycled materials.

Follow the five Rs of resource use: Refuse, Reduce, Reuse, Repurpose, and Recycle. Buy products in concentrated form whenever possible. Read newspapers and magazines online. Use in place of conventional paper mail. Refill and reuse a bottled water container with tap water. Do not use throwaway paper and plastic plates, cups and eating utensils, and other disposable items when reusable or refillable versions are available. Buy things that are reusable, recyclable, or compostable, and be sure to reuse, recycle, and compost them. Rent, borrow, or barter goods and services when you can. Ask yourself whether you really need a particular item. What Can You Do? Solid Waste

REUSE  Reusing products is an important way to reduce resource use, waste, and pollution in developed countries.  Reusing can be hazardous in developing countries for poor who scavenge in open dumps. They can be exposed to toxins or infectious diseases. They can be exposed to toxins or infectious diseases.

How People Reuse Materials  Children looking for materials to sell in an open dump near Manila in the Philippines.

Case Study: Using Refillable Containers  Refilling and reusing containers uses fewer resources and less energy, produces less waste, saves money, and creates jobs. In Denmark and Canada’s Price Edward’s Island there is a ban on all beverage containers that cannot be reused. In Denmark and Canada’s Price Edward’s Island there is a ban on all beverage containers that cannot be reused. In Finland 95% of soft drink and alcoholic beverages are refillable (Germany 75%). In Finland 95% of soft drink and alcoholic beverages are refillable (Germany 75%).

REUSE  Reducing resource waste: energy consumption for different types of 350-ml (12-oz) beverage containers.

RECYCLING  Recycling many plastics is chemically and economically difficult. Many plastics are hard to isolate from other wastes. Many plastics are hard to isolate from other wastes. Recovering individual plastic resins does not yield much material. Recovering individual plastic resins does not yield much material. The cost of virgin plastic resins is lower than recycled resins due to low fossil fuel costs. The cost of virgin plastic resins is lower than recycled resins due to low fossil fuel costs. There are new technologies that are making plastics biodegradable. There are new technologies that are making plastics biodegradable.

Important part of economy Source separation is inconvenient for some people Reduces profits from landfills and incinerators Reduces air and water pollution Saves energy Reduces mineral demand Reduces greenhouse gas emissions Reduces solid waste production and disposal Helps protect biodiversity Can save money for items such as paper, metals, and some plastics Does not save landfill space in areas with ample land May lose money for items such as glass and most plastic DisadvantagesAdvantages Trade-Offs Recycling

Burning Solid Waste  Waste-to-energy incinerator with pollution controls that burns mixed solid waste.

Reduces trash volume Can compete with recycling for burnable materials such as newspaper Output approach that encourages waste production Older or poorly managed facilities can release large amounts of air pollution Some air pollution Difficult to site because of citizen opposition Costs more than short-distance hauling to landfills Expensive to build Some facilities recover and sell metals Modern controls reduce air pollution Sale of energy reduces cost Concentrates hazardous substances into ash for burial or use as landfill cover Low water pollution Less need for landfills Trade-Offs Incineration AdvantagesDisadvantages

Burying Solid Waste  Most of the world’s MSW is buried in landfills that eventually are expected to leak toxic liquids into the soil and underlying aquifers. Open dumps: are fields or holes in the ground where garbage is deposited and sometimes covered with soil. Mostly used in developing countries. Open dumps: are fields or holes in the ground where garbage is deposited and sometimes covered with soil. Mostly used in developing countries. Sanitary landfills: solid wastes are spread out in thin layers, compacted and covered daily with a fresh layer of clay or plastic foam. Sanitary landfills: solid wastes are spread out in thin layers, compacted and covered daily with a fresh layer of clay or plastic foam.

Sand When landfill is full, layers of soil and clay seal in trash Methane storage and compressor building Leachate storage tank Leachate monitoring well Groundwater monitoring well Electricity generator building Leachate treatment system Methane gas recovery well Compacted solid waste Leachate pipes Leachate pumped up to storage tank for safe disposal Groundwater Clay and plastic lining to prevent leaks; pipes collect leachate from bottom of landfill Topsoil Sand Clay Subsoil Probes to detect methane leaks Garbage Synthetic liner Sand Clay Pipes collect explosive methane as used as fuel to generate electricity

No open burning Trade-Offs Sanitary Landfills AdvantagesDisadvantages Eventually leaks and can contaminate groundwater Discourages recycling, reuse, and waste reduction Slow decomposition of wastes Groundwater contamination Releases greenhouse gases (methane and CO2) unless they are collected Air pollution from toxic gases and volatile organic compounds Dust Noise and traffic No shortage of landfill space in many areas Filled land can be used for other purposes Can handle large amounts of waste Can be built quickly Low operating costs Low groundwater pollution if sited properly Little odor

Case Study: What Should We Do with Used Tires?  We face a dilemma in deciding what to so with hundreds of millions of discarded tires. These tires are health hazards.  Discarded tires can collect water; stagnant water is a breeding ground for mosquitoes that transmit diseases such as West Nile virus.  Tire fire in Spain. Such fires are almost impossible to put out, can burn for weeks to years, and release large amounts of toxic air pollutants into the troposphere.

Why do we have landfills?  Protect groundwater  Protect surface water  Protect air quality  Control pathogenic migration

EPA Criteria for Hazardous Waste  Toxicity  Persistence in the environment  Degradability in the environment  Bioaccumulation potential  Hazardous Characteristics: ignitibility, corrosivity, reactivity, Toxicity Characteristic Leachate Procedure (TCLP)

Dioxins  Regulated by TSCA  Group of more than 70 different chlorinated dioxins  By-product of certain manufacturing processes  Carcinogen  Teratogen  Mutagen

Bioaccumulators  Chlorinated Insecticides  Carbamates  Organophosphates  Herbicides  Metals

Hydrogen Sulfide  Decomposition product of organic matter  Sludge press by-product  If the pH falls below 7 S.U., Hydrogen Sulfide is released  Toxic gas

Cyanides (-CN)  Commonly found in plating operations and sludges  When mixed with an acid, Hydrogen Cyanide gas is released  Can cause instantaneous death  Acutely toxic

Eight Heavy Metals (RCRA)  Arsenic  Barium  Cadmium  Chromium  Lead  Mercury  Selenium  Silver

Polychlorinated Biphenyls (PCBs)  Group of chlorinated hydrocarbons  Arochlor 1016, 1254, etc.  By-product of certain manufacturing processes  Transformer oil - dielectric properties

Secure Hazardous Waste Landfill  In the U.S. there are only 23 commercial hazardous waste landfills. Figure 22-22

Phytoremediation  Phytoremediation is actually a term for several ways in which plants can be used to clean up contaminated soils and water. Phytoextraction or inorganics or metals Phytoextraction or inorganics or metals Rhizofiltration for metals Rhizofiltration for metals Phytostabilization to stabilize soil Phytostabilization to stabilize soil Phytodegradation of organic compounds Phytodegradation of organic compounds Rhizodegradation for organics Rhizodegradation for organics Phytovolatilization Phytovolatilization

Hazardous Waste Regulations in the United States  Two major federal laws regulate the management and disposal of hazardous waste in the U.S.: Resource Conservation and Recovery Act (RCRA) Resource Conservation and Recovery Act (RCRA) Cradle-to-the-grave system to keep track waste.Cradle-to-the-grave system to keep track waste. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Commonly known as Superfund program.Commonly known as Superfund program.

Hazardous Waste Regulations in the United States  The Superfund law was designed to have polluters pay for cleaning up abandoned hazardous waste sites. Only 70% of the cleanup costs have come from the polluters, the rest comes from a trust fund financed until 1995 by taxes on chemical raw materials and oil. Only 70% of the cleanup costs have come from the polluters, the rest comes from a trust fund financed until 1995 by taxes on chemical raw materials and oil.