G. Cowan, RHUL Physics Discussion on significance page 1 Discussion on significance ATLAS Statistics Forum CERN/Phone, 2 December, 2009 Glen Cowan Physics.

Slides:



Advertisements
Similar presentations
Using the Profile Likelihood in Searches for New Physics / PHYSTAT 2011 G. Cowan 1 Using the Profile Likelihood in Searches for New Physics arXiv:
Advertisements

G. Cowan Statistics for HEP / LAL Orsay, 3-5 January 2012 / Lecture 2 1 Statistical Methods for Particle Physics Lecture 2: Tests based on likelihood ratios.
Statistical Data Analysis Stat 3: p-values, parameter estimation
G. Cowan RHUL Physics Profile likelihood for systematic uncertainties page 1 Use of profile likelihood to determine systematic uncertainties ATLAS Top.
G. Cowan Statistics for HEP / NIKHEF, December 2011 / Lecture 3 1 Statistical Methods for Particle Physics Lecture 3: Limits for Poisson mean: Bayesian.
G. Cowan RHUL Physics Bayesian methods for HEP / DESY Terascale School page 1 Bayesian statistical methods for HEP Terascale Statistics School DESY, Hamburg.
G. Cowan RHUL Physics Comment on use of LR for limits page 1 Comment on definition of likelihood ratio for limits ATLAS Statistics Forum CERN, 2 September,
G. Cowan Statistical methods for HEP / Birmingham 9 Nov Recent developments in statistical methods for particle physics Particle Physics Seminar.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan 2011 CERN Summer Student Lectures on Statistics / Lecture 41 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability.
G. Cowan RHUL Physics Statistical Methods for Particle Physics / 2007 CERN-FNAL HCP School page 1 Statistical Methods for Particle Physics (2) CERN-FNAL.
G. Cowan RHUL Physics Higgs combination note status page 1 Status of Higgs Combination Note ATLAS Statistics/Higgs Meeting Phone, 7 April, 2008 Glen Cowan.
G. Cowan Statistics for HEP / NIKHEF, December 2011 / Lecture 2 1 Statistical Methods for Particle Physics Lecture 2: Tests based on likelihood ratios.
G. Cowan Statistical Data Analysis / Stat 4 1 Statistical Data Analysis Stat 4: confidence intervals, limits, discovery London Postgraduate Lectures on.
G. Cowan Shandong seminar / 1 September Some Developments in Statistical Methods for Particle Physics Particle Physics Seminar Shandong University.
G. Cowan Discovery and limits / DESY, 4-7 October 2011 / Lecture 2 1 Statistical Methods for Discovery and Limits Lecture 2: Tests based on likelihood.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 7 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan Discovery and limits / DESY, 4-7 October 2011 / Lecture 3 1 Statistical Methods for Discovery and Limits Lecture 3: Limits for Poisson mean: Bayesian.
G. Cowan RHUL Physics Bayesian Higgs combination page 1 Bayesian Higgs combination using shapes ATLAS Statistics Meeting CERN, 19 December, 2007 Glen Cowan.
Statistical aspects of Higgs analyses W. Verkerke (NIKHEF)
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 2 page 1 Statistical Methods in Particle Physics Lecture 2: Limits and Discovery.
G. Cowan 2009 CERN Summer Student Lectures on Statistics1 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability densities,
G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 21 Topics in Statistical Data Analysis for HEP Lecture 2: Statistical Tests CERN.
G. Cowan Statistical techniques for systematics page 1 Statistical techniques for incorporating systematic/theory uncertainties Theory/Experiment Interplay.
G. Cowan RHUL Physics Bayesian Higgs combination page 1 Bayesian Higgs combination based on event counts (follow-up from 11 May 07) ATLAS Statistics Forum.
G. Cowan Weizmann Statistics Workshop, 2015 / GDC Lecture 31 Statistical Methods for Particle Physics Lecture 3: asymptotics I; Asimov data set Statistical.
G. Cowan RHUL Physics page 1 Status of search procedures for ATLAS ATLAS-CMS Joint Statistics Meeting CERN, 15 October, 2009 Glen Cowan Physics Department.
G. Cowan ATLAS Statistics Forum / Minimum Power for PCL 1 Minimum Power for PCL ATLAS Statistics Forum EVO, 10 June, 2011 Glen Cowan* Physics Department.
G. Cowan RHUL Physics LR test to determine number of parameters page 1 Likelihood ratio test to determine best number of parameters ATLAS Statistics Forum.
G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 41 Statistics for the LHC Lecture 4: Bayesian methods and further topics Academic.
G. Cowan RHUL Physics Input from Statistics Forum for Exotics page 1 Input from Statistics Forum for Exotics ATLAS Exotics Meeting CERN/phone, 22 January,
G. Cowan S0S 2010 / Statistical Tests and Limits 1 Statistical Tests and Limits Lecture 1: general formalism IN2P3 School of Statistics Autrans, France.
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
Easy Limit Statistics Andreas Hoecker CAT Physics, Mar 25, 2011.
G. Cowan Lectures on Statistical Data Analysis Lecture 8 page 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem 2Random variables and.
1 Introduction to Statistics − Day 3 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
G. Cowan NExT Workshop, 2015 / GDC Lecture 11 Statistical Methods for Particle Physics Lecture 1: introduction & statistical tests Fifth NExT PhD Workshop:
G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Lecture 4 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
G. Cowan Statistical methods for particle physics / Cambridge Recent developments in statistical methods for particle physics HEP Phenomenology.
G. Cowan Computing and Statistical Data Analysis / Stat 9 1 Computing and Statistical Data Analysis Stat 9: Parameter Estimation, Limits London Postgraduate.
G. Cowan RHUL Physics Analysis Strategies Workshop -- Statistics Forum Report page 1 Report from the Statistics Forum ATLAS Analysis Strategies Workshop.
G. Cowan, RHUL Physics Statistics for early physics page 1 Statistics jump-start for early physics ATLAS Statistics Forum EVO/Phone, 4 May, 2010 Glen Cowan.
G. Cowan Statistical methods for particle physics / Wuppertal Recent developments in statistical methods for particle physics Particle Physics.
G. Cowan RHUL Physics Status of Higgs combination page 1 Status of Higgs Combination ATLAS Higgs Meeting CERN/phone, 7 November, 2008 Glen Cowan, RHUL.
G. Cowan Cargese 2012 / Statistics for HEP / Lecture 21 Statistics for HEP Lecture 2: Discovery and Limits International School Cargèse August 2012 Glen.
In Bayesian theory, a test statistics can be defined by taking the ratio of the Bayes factors for the two hypotheses: The ratio measures the probability.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Statistical methods for HEP / Freiburg June 2011 / Lecture 2 1 Statistical Methods for Discovery and Limits in HEP Experiments Day 2: Discovery.
G. Cowan IHEP seminar / 19 August Some Developments in Statistical Methods for Particle Physics Particle Physics Seminar IHEP, Beijing 19 August,
G. Cowan RHUL Physics Statistical Issues for Higgs Search page 1 Statistical Issues for Higgs Search ATLAS Statistics Forum CERN, 16 April, 2007 Glen Cowan.
G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 21 Statistics for the LHC Lecture 2: Discovery Academic Training Lectures CERN,
G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 31 Statistical Tests and Limits Lecture 3 IN2P3 School of Statistics Autrans, France 17—21.
G. Cowan SLAC Statistics Meeting / 4-6 June 2012 / Two Developments 1 Two developments in discovery tests: use of weighted Monte Carlo events and an improved.
G. Cowan CERN Academic Training 2012 / Statistics for HEP / Lecture 21 Statistics for HEP Lecture 2: Discovery and Limits Academic Training Lectures CERN,
Discussion on significance
Computing and Statistical Data Analysis / Stat 11
Statistics for the LHC Lecture 3: Setting limits
LAL Orsay, 2016 / Lectures on Statistics
Comment on Event Quality Variables for Multivariate Analyses
Tutorial on Multivariate Methods (TMVA)
TAE 2017 Centro de ciencias Pedro Pascual Benasque, Spain
School on Data Science in (Astro)particle Physics
TAE 2018 / Statistics Lecture 3
Statistical Methods for the LHC
TAE 2018 Benasque, Spain 3-15 Sept 2018 Glen Cowan Physics Department
TAE 2017 / Statistics Lecture 2
Statistical Methods for HEP Lecture 3: Discovery and Limits
Decomposition of Stat/Sys Errors
TAE 2018 Centro de ciencias Pedro Pascual Benasque, Spain
Presentation transcript:

G. Cowan, RHUL Physics Discussion on significance page 1 Discussion on significance ATLAS Statistics Forum CERN/Phone, 2 December, 2009 Glen Cowan Physics Department Royal Holloway, University of London

G. Cowan, RHUL Physics Discussion on significance page 2 p-values The standard way to quantify the significance of a discovery is to give the p-value of the background-only hypothesis H 0 : p = Prob( data equally or more incompatible with H 0 | H 0 ) Requires a definition of what data values constitute a lesser level of compatibility with H 0 relative to the level found with the observed data. Define this to get high probability to reject H 0 if a particular signal model (or class of models) is true. Note that actual confidence in whether a real discovery is made depends also on other factors, e.g., plausibility of signal, degree to which it describes the data, reliability of the model used to find the p-value. p-value is really only first step!

page 3 Significance from p-value Often define significance Z as the number of standard deviations that a Gaussian variable would fluctuate in one direction to give the same p-value. TMath::Prob TMath::NormQuantile G. Cowan, RHUL Physics Discussion on significance Z = 5 corresponds to p = 2.87 × 10 -7

G. Cowan, RHUL Physics Discussion on significance page 4 Sensitivity (expected significance) The significance with which one rejects the SM depends on the particular data set obtained. To characterize the sensitivity of a planned analysis, give the expected (e.g., mean or median) significance assuming a given signal model. To determine accurately could in principle require an MC study. Often sufficient to evaluate with representative (e.g. “Asimov”) data.

G. Cowan, RHUL Physics Discussion on significance page 5 Significance for single counting experiment Suppose we measure n events, expect s signal, b background. n ~ Poisson(s+b) Find p-value of s = 0 hypothesis. data values with n ≥ n obs constitute lesser compatibility

G. Cowan, RHUL Physics Discussion on significance page 6 Simple counting experiment with LR Equivalently can write expectation value of n as where  is a strength parameter (background-only is  = 0). To test a value of , construct likelihood ratio where muhat is the Maximum Likelihood Estimator (MLE), which we constrain to be positive:

G. Cowan, RHUL Physics Discussion on significance page 7 p-value from LR Also define High values correspond to increasing incompatibility with . For discovery we are testing m = 0. We find The p-value is

G. Cowan, RHUL Physics Discussion on significance page 8 Significance from LR using  2 approx. For large enough n, we can regard q  as continuous, and find Furthermore, for large enough n, the distribution of q  approaches a form related to the chi-square distribution for 1 d.o.f. Complications arise from requirement that  be positive, but end result simple. For test of  = 0 (discovery), significance is

G. Cowan, RHUL Physics Discussion on significance page 9 Sensitivity for simple counting exp. Find median significance from median n, which is approximately s + b when this is sufficiently large. Or, if using the approximate formula based on chi-square, approximate median by substituting s + b for n (“Asimov” data) For s << b, expanding logarithm and keeping terms to O(s 2 ),

G. Cowan, RHUL Physics Discussion on significance page 10 Simple counting exp. with bkg. uncertainty Suppose b consists of several components, and that these are not precisely known but estimated from subsidiary measurements: m i ~ Poisson, n ~ Poisson, Likelihood function for full set of measurements is:

G. Cowan, RHUL Physics Discussion on significance page 11 Profile likelihood ratio To account for the nuisance parameters (systematics), test  with the profile likelihood ratio: Double hat: maximize L for the given  Single hats: maximize L wrt  and b. Important point is that q  =  2 ln (  ) still related to chi-square distribution even with nuisance parameters (for sufficiently large sample), so retain the simple formula for significance:

G. Cowan, RHUL Physics Discussion on significance page 12 Examples from recent HN posts From recent hypernews posts (Tetiana Hrynova, Xavier Prudent), Consider s = 20.4, b = 2.5 ± 1.5. What is “correct” sensitivity? First suppose b = 2.5 exactly, then: 1) Use MC to find median, assuming s = 20.4, of 2) Use formula based on chi-square approx. for likelihood ratio: 3) Use Best(?) Good for s+b > dozen? Here OK for s dozen?

G. Cowan, RHUL Physics Discussion on significance page 13 Examples from recent HN posts (2) To take into account the uncertainty in the background, need to understand the origin of the 2.5 ± 1.5. Is this e.g. an estimate based on a Poisson measurement? Use profile likelihood for nuisance parameter b. Or is it a Gaussian prior (truncated at zero) with mean 2.5,  = 1.5? Use “Cousins-Highland”

G. Cowan, RHUL Physics Discussion on significance page 14 Look-elsewhere effect The p-value should give the probability of rejecting the background- only hypothesis if it is true, i.e., the probability of a false discovery. But, we carry out many tests, e.g., we look for a Higgs of many different masses. Need to correct for the fact that the probability that one of these will result in a 5 sigma effect is then > 2.87 × 10 . Several approaches: Treat signal parameter (e.g. Higgs mass) as a floating parameter in the likelihood ratio (Wilks’ thm no good?) Compute trials factor with MC (find probability that one will reject bkg-only for some (any) point in signal par. space. Approx. correction, e.g., ~ mass range / mass resolution. Ongoing discussion but should move towards more concrete guidelines.

G. Cowan, RHUL Physics Discussion on significance page 15 Provisional conclusions Key is to view p-value as the basic quantity of interest; Z is equivalent, and all “magic formulae” are various approximations for Z. Also other considerations for discovery (and limits) beyond p-value, e.g., level to which signal described by data, plausibility of signal model, reliability of model for p-value, … Also consider e.g. Bayes factors for complementary info. StatForum should move towards firm recommendations on what formulae to use where possible, but cannot investigate every approximation – analysts must take some responsibility here. Draft note (INT) attached to agenda on discovery significance; will also have partner note on limits.