3-1 Chapter 3 Time Value of Money © Pearson Education Limited 2004 Fundamentals of Financial Management, 12/e Created by: Gregory A. Kuhlemeyer, Ph.D.

Slides:



Advertisements
Similar presentations
Microeconomics and Macroeconomics FCS 3450 Spring 2015 Unit 3.
Advertisements

3-1 Time Value of Money. 3-2 After studying, you should be able to: 1. Understand what is meant by "the time value of money." 2. Understand the relationship.
Chapter 3 The Time Value of Money © 2005 Thomson/South-Western.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Chapter 4,5 Time Value of Money.
1 Chapter 11 Time Value of Money Adapted from Financial Accounting 4e by Porter and Norton.
4 The Time Value Of Money.
Principles of Managerial Finance 9th Edition
D- 1 TIME VALUE OF MONEY Financial Accounting, Sixth Edition D.
Accounting & Finance for Bankers - Business Mathematics- Module A SPBT College.
McGraw-Hill/Irwin ©2008 The McGraw-Hill Companies, All Rights Reserved CHAPTER3CHAPTER3 CHAPTER3CHAPTER3 The Interest Factor in Financing.
TIME VALUE OF MONEY Chapter 5. The Role of Time Value in Finance Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-2 Most financial decisions.
Chapter 3 The Time Value of Money. 2 Time Value of Money  The most important concept in finance  Used in nearly every financial decision  Business.
Lecture Four Time Value of Money and Its Applications.
3.1 Van Horne and Wachowicz, Fundamentals of Financial Management, 13th edition. © Pearson Education Limited Created by Gregory Kuhlemeyer. Chapter.
Principles of Corporate Finance Session 10 Unit II: Time Value of Money.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Bennie Waller – Longwood University Personal Finance Bennie Waller Longwood University 201 High Street Farmville, VA.
ERT461 BIOSYSTEMS ENGINEERING DESIGN 1 ERT424 BIOPROCESS PLANT DESIGN 1 1.
Chapter 3 The Time Value of Money
Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. Understand the concept.
The Time Value of Money Compounding and Discounting Single Sums.
3-1 Chapter 3 Time Value of Money © Pearson Education Limited 2004 Fundamentals of Financial Management, 12/e Created by: Gregory A. Kuhlemeyer, Ph.D.
Chapter 5 – The Time Value of Money  2005, Pearson Prentice Hall.
Chapter 4 Time Value of Money. Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-2 Learning Goals 1.Discuss the role of time value in finance,
Applying Time Value Concepts
Chapter 5 The Time Value of Money
Time Value of Money.
TIME VALUE OF MONEY. WHY TIME VALUE A rupee today is more valuable than a rupee a year hence. Why ? Preference for current consumption over future consumption.
Introduction To Valuation: The Time Value Of Money Chapter 4.
© 2003 McGraw-Hill Ryerson Limited 9 9 Chapter The Time Value of Money-Part 1 McGraw-Hill Ryerson©2003 McGraw-Hill Ryerson Limited Based on: Terry Fegarty.
Summary of Previous Lecture Corporation's taxable income and corporate tax rate - both average and marginal. Different methods of depreciation. (Straight.
Chapter IV Tutorial Time Value of Money. Important Abbreviations N (number of periods) I/Y (interest per year) PV (present value) PMT (payment) FV (future.
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Chapter 4 Time Value of Money.
August, 2000UT Department of Finance The Time Value of Money 4 What is the “Time Value of Money”? 4 Compound Interest 4 Future Value 4 Present Value 4.
© 2009 Cengage Learning/South-Western The Time Value Of Money Chapter 3.
ENGINEERING ECONOMICS Lecture # 2 Time value of money Interest Present and Future Value Cash Flow Cash Flow Diagrams.
3b.1 Van Horne and Wachowicz, Fundamentals of Financial Management, 13th edition. © Pearson Education Limited Created by Gregory Kuhlemeyer. Chapter.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Ch 4, Time Value of Money, Learning Goals 1.Concept of time value of money (TVOM). 2.Calculate for a.
© 2009 Cengage Learning/South-Western The Time Value Of Money Chapter 3.
COMPOUNDING FUTURE VALUE OF A PRESENT SUM FUTURE VALUE OF A SERIES OF PAYMENTS.
DISCOUNTING PROCEDURE WHEREBY THE PRESENT VALUE OF FUTURE INCOME IS DETERMINED. PRESENT VALUE OF A FUTURE PAYMENT PRESENT VALUE OF A SERIES OF PAYMENTS.
4-1 Business Finance (MGT 232) Lecture Time Value of Money.
Ch. 6 - The Time Value of Money , Prentice Hall, Inc.
Investment Analysis Chapter #8. Time Value of Money u How does time affect money? u Does money increase or decrease over time?
Accounting and the Time Value of Money
2-1 Copyright © 2006 McGraw Hill Ryerson Limited prepared by: Sujata Madan McGill University Fundamentals of Corporate Finance Third Canadian Edition.
Chapter # 2.  A dollar received today is worth more than a dollar received tomorrow › This is because a dollar received today can be invested to earn.
3-1 Chapter 3 Time Value of Money © 2001 Prentice-Hall, Inc. Fundamentals of Financial Management, 11/e Created by: Gregory A. Kuhlemeyer, Ph.D. Carroll.
3-1 Chapter 3 Time Value of Money. 3-2 After studying Chapter 3, you should be able to: 1. Understand what is meant by "the time value of money." 2. Understand.
1 IIS Chapter 5 - The Time Value of Money. 2 IIS The Time Value of Money Compounding and Discounting Single Sums.
Chapter 5 - The Time Value of Money  2005, Pearson Prentice Hall.
Present Value Professor XXXXX Course Name / Number.
Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 0 Chapter 5 Introduction to Valuation: The Time Value of Money.
Financial Management [FIN501] Suman Paul Suman Paul Chowdhury Suman Paul Suman Paul Chowdhury
Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-1 Ch 4, TVOM, Learning Goals Concept of time value of money (TVOM). Calculate for a single.
Time Value of Money.
ERT 461: BIOSYSTEMS ENGINEERING DESIGN 1
Chapter 3 The Time Value of Money.
The Time Value of Money Miss Faith Moono Simwami
What would you rather have?
Chapter 3.3 Time Value of Money.
Chapter 5 Introduction to Valuation: The Time Value of Money.
Chapter 3 Time Value of Money © Pearson Education Limited 2004
Time Value of Money – Part One (Ch. 2)
Presentation transcript:

3-1 Chapter 3 Time Value of Money © Pearson Education Limited 2004 Fundamentals of Financial Management, 12/e Created by: Gregory A. Kuhlemeyer, Ph.D. Carroll College, Waukesha, WI

3-2 The Time Value of Money u The Interest Rate u Simple Interest u Compound Interest u The Interest Rate u Simple Interest u Compound Interest

3-3 $10,000 today Obviously, $10,000 today. TIME VALUE TO MONEY You already recognize that there is TIME VALUE TO MONEY!! The Interest Rate $10,000 today $10,000 in 5 years Which would you prefer -- $10,000 today or $10,000 in 5 years?

3-4 TIME INTEREST TIME allows you the opportunity to postpone consumption and earn INTEREST. Why TIME? TIME Why is TIME such an important element in your decision?

3-5 Types of Interest u Compound Interest Interest paid (earned) on any previous interest earned, as well as on the principal borrowed (lent). u Simple Interest Interest paid (earned) on only the original amount, or principal, borrowed (lent).

3-6 Simple Interest Formula Formula FormulaSI = P 0 (i)(n) SI:Simple Interest P 0 :Deposit today (t=0) i:Interest Rate per Period n:Number of Time Periods

3-7 $140 u SI = P 0 (i)(n) = $1,000(.07)(2) = $140 Simple Interest Example u Assume that you deposit $1,000 in an account earning 7% simple interest for 2 years. What is the accumulated interest at the end of the 2nd year?

3-8 FV $1,140 FV = P 0 + SI = $1,000 + $140 = $1,140 u Future Value u Future Value is the value at some future time of a present amount of money, or a series of payments, evaluated at a given interest rate. Simple Interest (FV) Future Value FV u What is the Future Value (FV) of the deposit?

3-9 The Present Value is simply the $1,000 you originally deposited. That is the value today! u Present Value u Present Value is the current value of a future amount of money, or a series of payments, evaluated at a given interest rate. Simple Interest (PV) Present Value PV u What is the Present Value (PV) of the previous problem?

3-10 Why Compound Interest? Future Value (U.S. Dollars)

3-11 $1,000 2 years Assume that you deposit $1,000 at a compound interest rate of 7% for 2 years. Future Value Single Deposit (Graphic) $1,000 FV 2 7%

3-12 FV 1 P 0 $1,000 $1,070 FV 1 = P 0 (1+i) 1 = $1,000 (1.07) = $1,070 Compound Interest You earned $70 interest on your $1,000 deposit over the first year. This is the same amount of interest you would earn under simple interest. Future Value Single Deposit (Formula)

3-13 FV 1 P 0 $1,000 $1,070 FV 1 = P 0 (1+i) 1 = $1,000 (1.07) = $1,070 FV 2 P 0 $1,000 P 0 $1,000 $1, FV 2 = FV 1 (1+i) 1 = P 0 (1+i)(1+i) = $1,000(1.07)(1.07) = P 0 (1+i) 2 = $1,000(1.07) 2 = $1, $4.90 You earned an EXTRA $4.90 in Year 2 with compound over simple interest. Future Value Single Deposit (Formula) Future Value Single Deposit (Formula)

3-14 FV 1 FV 1 = P 0 (1+i) 1 FV 2 FV 2 = P 0 (1+i) 2 Future Value General Future Value Formula: FV n FV n = P 0 (1+i) n FV n FVIFSee Table I or FV n = P 0 (FVIF i,n ) -- See Table I General Future Value Formula etc.

3-15 FVIF FVIF i,n is found on Table I at the end of the book. Valuation Using Table I

3-16 FV 2 FVIF $1,145 FV 2 = $1,000 (FVIF 7%,2 ) = $1,000 (1.145) = $1,145 [Due to Rounding] Using Future Value Tables

3-17 $10,000 5 years Julie Miller wants to know how large her deposit of $10,000 today will become at a compound annual interest rate of 10% for 5 years. Story Problem Example $10,000 FV 5 10%

3-18 FV 5 FVIF $16,110 u Calculation based on Table I: FV 5 = $10,000 (FVIF 10%, 5 ) = $10,000 (1.611) = $16,110 [Due to Rounding] Story Problem Solution FV n FV 5 $16, u Calculation based on general formula: FV n = P 0 (1+i) n FV 5 = $10,000 ( ) 5 = $16,105.10

3-19 $1,000 2 years. Assume that you need $1,000 in 2 years. Let’s examine the process to determine how much you need to deposit today at a discount rate of 7% compounded annually $1,000 7% PV 1 PV 0 Present Value Single Deposit (Graphic)

3-20 PV 0 FV 2 $1,000 FV 2 $ PV 0 = FV 2 / (1+i) 2 = $1,000 / (1.07) 2 = FV 2 / (1+i) 2 = $ Present Value Single Deposit (Formula) $1,000 7% PV 0

3-21 PV 0 FV 1 PV 0 = FV 1 / (1+i) 1 PV 0 FV 2 PV 0 = FV 2 / (1+i) 2 Present Value General Present Value Formula: PV 0 FV n PV 0 = FV n / (1+i) n PV 0 FV n PVIFSee Table II or PV 0 = FV n (PVIF i,n ) -- See Table II General Present Value Formula etc.

3-22 PVIF PVIF i,n is found on Table II at the end of the book. Valuation Using Table II

3-23 PV 2 $1,000 $1,000 $873 PV 2 = $1,000 (PVIF 7%,2 ) = $1,000 (.873) = $873 [Due to Rounding] Using Present Value Tables

3-24 $10,0005 years Julie Miller wants to know how large of a deposit to make so that the money will grow to $10,000 in 5 years at a discount rate of 10%. Story Problem Example $10,000 PV 0 10%

3-25 PV 0 FV n PV 0 $10,000 $6, u Calculation based on general formula: PV 0 = FV n / (1+i) n PV 0 = $10,000 / ( ) 5 = $6, PV 0 $10,000PVIF $10,000 $6, u Calculation based on Table I: PV 0 = $10,000 (PVIF 10%, 5 ) = $10,000 (.621) = $6, [Due to Rounding] Story Problem Solution

Read problem thoroughly 2. Create a time line 3. Put cash flows and arrows on time line 4. Determine if it is a PV or FV problem 5. Determine if solution involves a single CF, annuity stream(s), or mixed flow 6. Solve the problem 7. Check with financial calculator (optional) Steps to Solve Time Value of Money Problems

3-27 Present Value 10% Julie Miller will receive the set of cash flows below. What is the Present Value at a discount rate of 10%. Mixed Flows Example $600 $600 $400 $400 $100 $600 $600 $400 $400 $100 PV 0 10%

3-28 piece-at-a-time piece 1.Solve a “piece-at-a-time” by discounting each piece back to t=0. group-at-a-time group 2.Solve a “group-at-a-time” by first breaking problem into groups of annuity streams and any single cash flow groups. Then discount each group back to t=0. How to Solve?

3-29 “Piece-At-A-Time”“Piece-At-A-Time” $600 $600 $400 $400 $100 $600 $600 $400 $400 $100 10% $545.45$495.87$300.53$ $ $ = PV 0 of the Mixed Flow