DESIGNING AND MAKING OF NOISE REDUCTION APPLICATION USING IMAGE MORPHOLOGY by : Dionisius Kristal / 26406061.

Slides:



Advertisements
Similar presentations
Gray-Scale Morphological Filtering
Advertisements

Computational Biology, Part 23 Biological Imaging II Robert F. Murphy Copyright  1996, 1999, All rights reserved.
EDGE DETECTION ARCHANA IYER AADHAR AUTHENTICATION.
Digital Photography with Flash and No-Flash Image Pairs By: Georg PetschniggManeesh Agrawala Hugues HoppeRichard Szeliski Michael CohenKentaro Toyama,
Hongliang Li, Senior Member, IEEE, Linfeng Xu, Member, IEEE, and Guanghui Liu Face Hallucination via Similarity Constraints.
ECE 472/572 - Digital Image Processing Lecture 7 - Image Restoration - Noise Models 10/04/11.
Digital Image Processing In The Name Of God Digital Image Processing Lecture3: Image enhancement M. Ghelich Oghli By: M. Ghelich Oghli
Chapter 9: Morphological Image Processing
Tutorial # 10 Morphological Operations I8oZE.
School of Computing Science Simon Fraser University
Detecting Digital Image Forgeries Using Sensor Pattern Noise presented by: Lior Paz Jan Lukas, jessica Fridrich and Miroslav Goljan.
Functional Magnetic Resonance Imaging (fMRI) Alexander Wolf ( ) Supervisor : Dr. Peter Tischer.
Efficient Moving Object Segmentation Algorithm Using Background Registration Technique Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, Fellow, IEEE Hsin-Hua.
1 Preprocessing for JPEG Compression Elad Davidson & Lilach Schwartz Project Supervisor: Ari Shenhar SPRING 2000 TECHNION - ISRAEL INSTITUTE of TECHNOLOGY.
Low Pass Filtering Spatial frequency is a measure of how rapidly brightness or colour varies as we traverse an image. Figure 7.11a shows that an image.
1 Static Sprite Generation Prof ︰ David, Lin Student ︰ Jang-Ta, Jiang
Detecting Image Region Duplication Using SIFT Features March 16, ICASSP 2010 Dallas, TX Xunyu Pan and Siwei Lyu Computer Science Department University.
Traffic Sign Recognition Jacob Carlson Sean St. Onge Advisor: Dr. Thomas L. Stewart.
Course Website: Digital Image Processing Morphological Image Processing.
CS443: Digital Imaging and Multimedia Filters Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Spring 2008 Ahmed Elgammal Dept.
Image Enhancement.
Computer Vision Basics Image Terminology Binary Operations Filtering Edge Operators.
1 © 2010 Cengage Learning Engineering. All Rights Reserved. 1 Introduction to Digital Image Processing with MATLAB ® Asia Edition McAndrew ‧ Wang ‧ Tseng.
图像处理技术讲座(10) Digital Image Processing (10) 灰度的数学形态学(2) Mathematical morphology in gray scale (2) 顾 力栩 上海交通大学 计算机系
E.G.M. PetrakisBinary Image Processing1 Binary Image Analysis Segmentation produces homogenous regions –each region has uniform gray-level –each region.
FEATURE EXTRACTION FOR JAVA CHARACTER RECOGNITION Rudy Adipranata, Liliana, Meiliana Indrawijaya, Gregorius Satia Budhi Informatics Department, Petra Christian.
By Meidika Wardana Kristi, NRP  Digital cameras used to take picture of an object requires three sensors to store the red, blue and green color.
Lecture 5. Morphological Image Processing. 10/6/20152 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of animals.
Image Processing1 Morphological and Other Area Operations Introduction –Morphology is the science of form and structure –It is about regions or.
Chapter 9.  Mathematical morphology: ◦ A useful tool for extracting image components in the representation of region shape.  Boundaries, skeletons,
IMAGE COMPRESSION USING BTC Presented By: Akash Agrawal Guided By: Prof.R.Welekar.
Computational Biology, Part 23 Biological Imaging III G. Steven Vanni Robert F. Murphy Copyright  1998, All rights reserved.
: Chapter 6: Morphological Image Processing 1 Montri Karnjanadecha ac.th/~montri Image Processing.
Digital Image Processing Chapter 9: Morphological Image Processing 5 September 2007 Digital Image Processing Chapter 9: Morphological Image Processing.
Morphological Image Processing
J. Shanbehzadeh M. Hosseinajad Khwarizmi University of Tehran.
Gianni Ramponi University of Trieste Images © 2002 Gonzalez & Woods Digital Image Processing Chapter 9 Morphological Image.
Enhancement. There are 4 main methods to enhancing images Contrast/Brightness control Filtering Tools Colour Channels Large Spectral Filters NOTE:It is.
1 Signal Processing Laboratory Swiss Federal Institute of Technology, Lausanne Cédric Dufour ( LTS-IBCM Collaboration ) The ‘microtubules’ project.
Mathematical Morphology Mathematical morphology (matematická morfologie) –A special image analysis discipline based on morphological transformations of.
Mobile Image Processing
Intelligent Vision Systems ENT 496 Image Filtering and Enhancement Hema C.R. Lecture 4.
CS654: Digital Image Analysis
CS654: Digital Image Analysis
1 Mathematic Morphology used to extract image components that are useful in the representation and description of region shape, such as boundaries extraction.
DIGITAL IMAGE PROCESSING
Morphological Image Processing Robotics. 2/22/2016Introduction to Machine Vision Remember from Lecture 12: GRAY LEVEL THRESHOLDING Objects Set threshold.
Adaptive Filter Based on Image Region Characteristics for Optimal Edge Detection Lussiana ETP STMIK JAKARTA STI&K Januari-2012.
Lecture(s) 3-4. Morphological Image Processing. 3/13/20162 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of.
Chapter 6 Skeleton & Morphological Operation. Image Processing for Pattern Recognition Feature Extraction Acquisition Preprocessing Classification Post.
Morphological Image Processing (Chapter 9) CSC 446 Lecturer: Nada ALZaben.
Morphological Image Processing
April 21, 2016Introduction to Artificial Intelligence Lecture 22: Computer Vision II 1 Canny Edge Detector The Canny edge detector is a good approximation.
Digital Image Processing Lecture 15: Morphological Algorithms April 27, 2005 Prof. Charlene Tsai.
Mathematical Morphology
Mathematical Morphology
- photometric aspects of image formation gray level images
Digital Image Processing CP-7008 Lecture # 09 Morphological Image Processing Fall 2011.
Game Theoretic Image Segmentation
Applications of AI Image Processing.
Chapter Four Objectives
CS Digital Image Processing Lecture 5
EEEB0765 Digital Signal Processing for Embedded Systems 8 Video and Image Processing in Embedded Systems (I) Assoc. Prof. Dr. Peerapol Yuvapoositanon.
Morphological Image Processing
Digital Image Processing Lecture 15: Morphological Algorithms
Morphological and Other Area Operations
Digital Image Processing Lecture 14: Morphology
Morphological Operators
DIGITAL IMAGE PROCESSING Elective 3 (5th Sem.)
Morphological Filters Applications and Extension Morphological Filters
Presentation transcript:

DESIGNING AND MAKING OF NOISE REDUCTION APPLICATION USING IMAGE MORPHOLOGY by : Dionisius Kristal /

Preliminary 0 The image result from the digital camera is not suit with the expected result. 0 The camera that produces image with a little noise is very expensive. 0 Some people develop algorithms to eliminate the noise (called noise reduction).

Previous Work 0 In 1986, Sternberg introduced the idea of noise reduction by repeatedly opening and closing with an increasing structuring elements size. 0 Song and Delp in 1990, discovered a technique they called "generalized morphological filter". However, use of structuring elements must be precise so that results can be maximized.

Theory 0 Image Processing Digital image processing is a discipline that studies matters relating to improvement of image quality. 0 Morphology Morphology is the science of form and structure. It is about regions or shapes, how they can be changed and counted, and how their areas can be evaluated.

Theory 0 Dilation to expand/grow

Theory 0 Erosion to reduce/shrink

Theory Dilation Erosion EXPANDEDREDUCED

Theory 0 Opening (Erosion, then Dilation)

Theory 0 Closing (Dilation, then Erosion)

Theory 0 Peak Signal to Noise Ratio Peak^2 is the peak pixel value between two images. RMSE is square root of MSE. The Sum of (Original Image – Result Image)^2/(width*height) ^2

Theory What is Noise Reduction? Noise Reduction is program/system that has ability to reduce the (image) noise. Original ImageResult Image

Theory Noise Reduction using Mathematical Morphology? 0 “Noisy” image = clean image + noise 0 Segment into features and noise (the residual image). 0 Residual image = the difference between an original image and smoothed version. 0 The features from residual image will be added back to the smoothed image. 0 The results is an image whose edges and other one dimensional features are as sharp as the original one, but has smooth regions between them.

Original Image

Result Image

How it works? 0 The process is divided by 2 processes : smoothing process, and detail recovery. 0 Smoothing process is OCCO filtering (morphologycal opening-closing-closing-opening) 0 Detail recovery process is TOPBOT filtering (Tophat and Bothat) where Tophat is a positive residual image and Bothat is a negative residual image. 0 The output of TOPBOT filtering is Tophat and Bothat accumulation, where in this case, Tophat and Bothat accumulation is clean from noise.

How it works? The final result : “Clean” image = Tophat Accumulation + OCCO Image – Bothat Accumulation

How it works? OCCO image Tophat Accumulation Bothat Accumulation “Clean” image = Tophat Accumulation + OCCO Image – Bothat Accumulation

How it works? OCCO image

How it works? Final Result

Flowchart (main) OCCO filtering Tophat filtering Bothat filtering Final Summary

Flowchart OCCO O=OPEN(I) OC=CLOSE(O) C=CLOSE(I) OCCO image = ½ (OC+CO) CO=OPEN(C)

Flowchart TOPBOT

System Design and Application 0 3 modules of the program are : Load Module  opening an image Noise Reduction Module  processing the noisy image Save Image Module  saving the image processing result.

Experiment High ISO images are shot with ISO 400 and ISO 800 Then those images are being processed with the program and Photoshop The image results will be compared with Low ISO image and there will be a number that indicate the PSNR score

Experiment There are 6 categories of image : 0 Image with small particle object (Kopi.jpg, Komputer.jpg, Tombol.jpg) 0 Image with bright object and dark background (Pasir.jpg, Beras.jpg) 0 Image with letter (Box.jpg, Majalah.jpg, Notes.jpg, Koran.jpg) 0 Image with certain pattern (Lemari.jpg, Jeans.jpg, Batik.jpg) 0 Face Image (Wajah1.jpg, Wajah2.jpg) 0 Image with Noise Generator added on it

Experiment Table (Kodak M1033 ISO 400) ISOGambarPerulanganIndeksPSNR MIC NRPSNR Photoshop 400 Box.jpg (Gambar 5.42) 1Gambar ,43 32,01 2Gambar ,13 3Gambar ,93 Kopi.jpg (Gambar 5.44) 1Gambar ,06 31,15 2Gambar ,89 3Gambar ,84 Majalah.jpg (Gambar 5.46) 1Gambar ,33 25,21 2Gambar ,39 3Gambar ,33 Notes.jpg (Gambar 5.48) 1Gambar ,51 28,77 2Gambar ,35 3Gambar ,29 Pasir.jpg (Gambar 5.50) 1Gambar ,3 29,43 2Gambar ,09 3Gambar ,02 Tombol.jpg (Gambar 5.52) 1Gambar ,65 36,56 2Gambar ,32 3Gambar ,15 Komputer.jp g (Gambar 5.54) 1Gambar ,39 32,68 2Gambar ,82 3Gambar ,53 Koran.jpg (Gambar 5.56) 1Gambar ,35 23,28 2Gambar ,92 3Gambar ,72 Lemari.jpg (Gambar 5.58) 1Gambar ,14 33,7 2Gambar ,19 3Gambar ,69 Beras.jpg (Gambar 5.60) 1Gambar ,1 31,02 2Gambar ,34 3Gambar ,88 Batik.jpg (Gambar 5.62) 1Gambar ,1 27,76 2Gambar ,03 3Gambar ,49 Jeans.jpg (Gambar 5.64) 1Gambar ,25 24,61 2Gambar ,34 3Gambar ,27

Experiment Table (Kodak M1033 ISO 800) ISOGambarPerulanganIndeksPSNR MIC NRPSNR Photoshop 800 Box.jpg (Gambar 5.43) 1Gambar ,68 31,25 2Gambar ,28 3Gambar ,01 Kopi.jpg (Gambar 5.45) 1Gambar ,96 32,44 2Gambar ,65 3Gambar ,57 Majalah.jpg (Gambar 5.47) 1Gambar ,62 23,69 2Gambar ,63 3Gambar ,57 Notes.jpg (Gambar 5.49) 1Gambar ,10 27,89 2Gambar ,93 3Gambar ,89 Pasir.jpg (Gambar 5.51) 1Gambar ,15 26,91 2Gambar ,94 3Gambar ,87 Tombol.jpg (Gambar 5.53) 1Gambar ,68 36,23 2Gambar ,62 3Gambar ,35 Komputer.jp g (Gambar 5.55) 1Gambar ,87 30,17 2Gambar ,43 3Gambar ,17 Koran.jpg (Gambar 5.57) 1Gambar ,39 21,32 2Gambar ,21 3Gambar ,1 Lemari.jpg (Gambar 5.59) 1Gambar ,05 33,23 2Gambar ,33 3Gambar ,94 Beras.jpg (Gambar 5.61) 1Gambar ,67 26,8 2Gambar ,56 3Gambar ,34 Batik.jpg (Gambar 5.63) 1Gambar ,66 24,04 2Gambar ,14 3Gambar ,82 Jeans.jpg (Gambar 5.65) 1Gambar ,86 21,5 2Gambar ,34 3Gambar ,27

Experiment Table (Nikon D90 ISO 400) ISOGambarPerulanganIndeksPSNR MIC NRPSNR Photoshop 400 Box.jpg (Gambar 5.66) 1Gambar ,38 27,54 2Gambar ,44 3Gambar ,22 Kopi.jpg (Gambar 5.68) 1Gambar ,57 24,54 2Gambar ,54 3Gambar ,44 Majalah.jpg (Gambar 5.70) 1Gambar ,53 31,78 2Gambar ,85 3Gambar ,56 Notes.jpg (Gambar 5.72) 1Gambar ,96 28,63 2Gambar ,5 3Gambar ,7 Pasir.jpg (Gambar 5.74) 1Gambar ,81 29,95 2Gambar ,37 3Gambar ,64 Tombol.jpg (Gambar 5.76) 1Gambar ,95 37,96 2Gambar ,18 3Gambar ,91 Komputer.j pg (Gambar 5.78) 1Gambar ,33 33,71 2Gambar ,77 3Gambar ,42 Koran.jpg (Gambar 5.80) 1Gambar ,2 25,72 2Gambar ,57 3Gambar ,69 Lemari.jpg (Gambar 5.82) 1Gambar ,49 37,45 2Gambar ,67 3Gambar ,45 Beras.jpg (Gambar 5.84) 1Gambar ,74 35,8 2Gambar ,1 3Gambar ,63 Batik.jpg (Gambar 5.86) 1Gambar ,31 22,38 2Gambar ,97 3Gambar ,8 Jeans.jpg (Gambar 5.88) 1Gambar ,15 16,25 2Gambar ,29 3Gambar ,28

Experiment Table (Nikon D90 ISO 800) ISOGambarPerulanganIndeksPSNR MIC NR PSNR Photoshop 800 Box.jpg (Gambar 5.67) 1Gambar , Gambar ,08 3Gambar ,85 Kopi.jpg (Gambar 5.69) 1Gambar , Gambar ,53 3Gambar ,44 Majalah.jpg (Gambar 5.71) 1Gambar , Gambar ,79 3Gambar ,07 Notes.jpg (Gambar 5.73) 1Gambar , Gambar ,5 3Gambar ,39 Pasir.jpg (Gambar 5.75) 1Gambar , Gambar ,08 3Gambar ,90 Tombol.jpg (Gambar 5.77) 1Gambar ,01 39,15 2Gambar ,12 3Gambar ,75 Komputer.j pg (Gambar 5.79) 1Gambar ,83 30,93 2Gambar ,56 3Gambar ,33 Koran.jpg (Gambar 5.81) 1Gambar ,21 22,85 2Gambar ,97 3Gambar ,90 Lemari.jpg (Gambar 5.83) 1Gambar ,17 33,59 2Gambar ,15 3Gambar ,58 Beras.jpg (Gambar 5.85) 1Gambar ,52 28,16 2Gambar ,07 3Gambar ,9 Batik.jpg (Gambar 5.87) 1Gambar ,33 22,42 2Gambar ,98 3Gambar ,89 Jeans.jpg (Gambar 5.89) 1Gambar ,46 16,49 2Gambar ,53 3Gambar ,2

Conclusion 0 The score difference between the program and Photoshop are not too far. It means, the output of the program is similar to Photoshop has. 0 The program does not process the “small particle” image too well because there are detail from the image (which is very small) that lost. (Ex: Kopi.jpg) 0 The program consumes high resources and takes a long time. The program runs about 3 minutes for each repetition 0 The repetition maximum amount is 3, otherwise the result image will be blurred.

Conclusion (cont.) 0 Image resolution also affects the result image. The result of low resolution image will be more blurred (compare to the high resolution image). 0 There are several types of images that are not suitable to use skeletonize process due to the residues that are not accurate and the effectiveness of time.

THANK YOU