Splash Screen.

Slides:



Advertisements
Similar presentations
GEOMETRY Medians and altitudes of a Triangle
Advertisements

5-3 Concurrent Lines, Medians, Altitudes
Introduction Think about all the properties of triangles we have learned so far and all the constructions we are able to perform. What properties exist.
NM Standards: AFG.C.5, GT.A.5, GT.B.4, DAP.B.3. Any point that is on the perpendicular bisector of a segment is equidistant from the endpoints of the.
Medians and Altitudes 5-4 of Triangles Warm Up Lesson Presentation
Vocabulary Median—A segment with endpoints being a vertex of a triangle and the midpoint of the opposite side. Altitude—A segment from a vertex to the.
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of the segment with the given endpoints.
5.1 Bisectors, Medians, and Altitudes. Objectives Identify and use ┴ bisectors and  bisectors in ∆s Identify and use medians and altitudes in ∆s.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–2) CCSS Then/Now Theorem 10.2 Example 1: Real-World Example: Use Congruent Chords to Find.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 4–7) CCSS Then/Now New Vocabulary Example 1:Position and Label a Triangle Key Concept: Placing.
Lesson 5-1 Bisectors, Medians and Altitudes. Objectives Identify and use perpendicular bisectors and angle bisectors in triangles Identify and use medians.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–5) CCSS Then/Now New Vocabulary Key Concept: Distance Between a Point and a Line Postulate.
Warm-up HAIR ACCESSORIES Ebony is following directions for folding a handkerchief to make a bandana for her hair. After she folds the handkerchief in half,
Medians and Altitudes of Triangles And Inequalities in One Triangle
Geometry Chapter 5 Review.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–3) CCSS Then/Now New Vocabulary Key Concept: Nonvertical Line Equations Example 1:Slope and.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–3) CCSS Then/Now New Vocabulary Key Concept: Power Property of Equality Example 1:Real-World.
5.3 - Concurrent Lines, Medians, and Altitudes
5-2 Medians and Altitudes of Triangles You identified and used perpendicular and angle bisectors in triangles. Identify and use medians in triangles. Identify.
 Perpendicular Bisector- a line, segment, or ray that passes through the midpoint of the side and is perpendicular to that side  Theorem 5.1  Any point.
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Over Chapter 4 Name______________ Special Segments in Triangles.
Splash Screen.
Holt Geometry 5-3 Medians and Altitudes of Triangles Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Points of Concurrency The point where three or more lines intersect.
Lesson 5-1 Bisectors, Medians and Altitudes. 5-Minute Check on Chapter 4 Transparency 5-1 Refer to the figure. 1. Classify the triangle as scalene, isosceles,
Chapter 5: Relationships in Triangles. Lesson 5.1 Bisectors, Medians, and Altitudes.
Median A median of a triangle is a segment with endpoints being a vertex of a triangle and the midpoint of the opposite side. Centroid The point of concurrency.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 4) CCSS Then/Now New Vocabulary Theorems: Perpendicular Bisectors Example 1: Use the Perpendicular.
Splash Screen.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 5–1) CCSS Then/Now New Vocabulary Theorem 5.7: Centroid Theorem Example 1: Use the Centroid.
Medians of a Triangle Section 4.6.
Holt McDougal Geometry 5-3 Medians and Altitudes of Triangles 5-3 Medians and Altitudes of Triangles Holt Geometry Warm Up Warm Up Lesson Presentation.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
Over Lesson 5–1 5-Minute Check 1 A.–5 B.0.5 C.5 D.10 In the figure, A is the circumcenter of ΔLMN. Find y if LO = 8y + 9 and ON = 12y – 11.
Splash Screen.
Splash Screen.
Bisectors, Medians, and Altitudes
Medians and Altitudes 5-2 of Triangles Warm Up Lesson Presentation
Splash Screen.
Medians and Altitudes of Triangles
Medians, Altitudes and Perpendicular Bisectors
Introduction Think about all the properties of triangles we have learned so far and all the constructions we are able to perform. What properties exist.
Medians and Altitudes of Triangles
Splash Screen.
Vocabulary and Examples
Special Segments in Triangles
Table of Contents Date: Topic: Description: Page:.
Splash Screen.
In the figure, A is the circumcenter of ΔLMN
Bisectors, Medians and Altitudes
Splash Screen.
Identify and use medians in triangles.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Splash Screen.
Medians and Altitudes of Triangles
Points of Concurrency Lessons
Warm Up 5.1 skills check!. Warm Up 5.1 skills check!
5.3 Concurrent Lines, Medians, and Altitudes
Splash Screen.
Splash Screen.
Bisectors of a Triangle
Medians and Altitudes of Triangles
Mathematical Practices
Presentation transcript:

Splash Screen

Five-Minute Check (over Lesson 5–1) CCSS Then/Now New Vocabulary Theorem 5.7: Centroid Theorem Example 1: Use the Centroid Theorem Example 2: Use the Centroid Theorem Example 3: Real-World Example: Find the Centroid on a Coordinate Plane Key Concept: Orthocenter Example 4: Find the Orthocenter on a Coordinate Plane Concept Summary: Special Segments and Points in Triangles Lesson Menu

In the figure, A is the circumcenter of ΔLMN In the figure, A is the circumcenter of ΔLMN. Find y if LO = 8y + 9 and ON = 12y – 11. A. –5 B. 0.5 C. 5 D. 10 5-Minute Check 1

In the figure, A is the circumcenter of ΔLMN. Find x if mAPM = 7x + 13. B. 11 C. 7 D. –13 5-Minute Check 2

In the figure, A is the circumcenter of ΔLMN In the figure, A is the circumcenter of ΔLMN. Find r if AN = 4r – 8 and AM = 3(2r – 11). A. –12.5 B. 2.5 C. 10.25 D. 12.5 5-Minute Check 3

In the figure, point D is the incenter of ΔABC In the figure, point D is the incenter of ΔABC. What segment is congruent to DG? ___ A. DE B. DA C. DC D. DB ___ 5-Minute Check 4

In the figure, point D is the incenter of ΔABC In the figure, point D is the incenter of ΔABC. What angle is congruent to DCF? A. GCD B. DCG C. DFB D. ADE 5-Minute Check 5

Which of the following statements about the circumcenter of a triangle is false? A. It is equidistant from the sides of the triangle. B. It can be located outside of the triangle. C. It is the point where the perpendicular bisectors intersect. D. It is the center of the circumscribed circle. 5-Minute Check 6

G.CO.10 Prove theorems about triangles. Content Standards G.CO.10 Prove theorems about triangles. G.MG.3 Apply geometric methods to solve problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). Mathematical Practices 6 Attend to precision. 3 Construct viable arguments and critique the reasoning of others. CCSS

Identify and use medians in triangles. You identified and used perpendicular and angle bisectors in triangles. Identify and use medians in triangles. Identify and use altitudes in triangles. Then/Now

median centroid altitude orthocenter Vocabulary

Concept

In ΔXYZ, P is the centroid and YV = 12. Find YP and PV. Use the Centroid Theorem In ΔXYZ, P is the centroid and YV = 12. Find YP and PV. Centroid Theorem YV = 12 Simplify. Example 1

YP + PV = YV Segment Addition 8 + PV = 12 YP = 8 Use the Centroid Theorem YP + PV = YV Segment Addition 8 + PV = 12 YP = 8 PV = 4 Subtract 8 from each side. Answer: YP = 8; PV = 4 Example 1

In ΔLNP, R is the centroid and LO = 30. Find LR and RO. A. LR = 15; RO = 15 B. LR = 20; RO = 10 C. LR = 17; RO = 13 D. LR = 18; RO = 12 Example 1

Use the Centroid Theorem In ΔABC, CG = 4. Find GE. Example 2

Use the Centroid Theorem CG = 4 6 = CE Example 2

Subtract 4 from each side. Use the Centroid Theorem CG + GE = CE Segment Addition 4 + GE = 6 Substitution GE = 2 Subtract 4 from each side. Answer: GE = 2 Example 2

In ΔJLN, JP = 16. Find PM. A. 4 B. 6 C. 16 D. 8 Example 2

Find the Centroid on a Coordinate Plane SCULPTURE An artist is designing a sculpture that balances a triangle on top of a pole. In the artist’s design on the coordinate plane, the vertices are located at (1, 4), (3, 0), and (3, 8). What are the coordinates of the point where the artist should place the pole under the triangle so that it will balance? Understand You need to find the centroid of the triangle. This is the point at which the triangle will balance. Example 3

Solve Graph the triangle and label the vertices A, B, and C. Find the Centroid on a Coordinate Plane Plan Graph and label the triangle with vertices at (1, 4), (3, 0), and (3, 8). Use the Midpoint Theorem to find the midpoint of one of the sides of the triangle. The centroid is two-thirds the distance from the opposite vertex to that midpoint. Solve Graph the triangle and label the vertices A, B, and C. Example 3

Find the midpoint D of BC. Find the Centroid on a Coordinate Plane Find the midpoint D of BC. Graph point D. Example 3

Find the Centroid on a Coordinate Plane Notice that is a horizontal line. The distance from D(3, 4) to A(1, 4) is 3 – 1 or 2 units. Example 3

Find the Centroid on a Coordinate Plane The centroid P is the distance. So, the centroid is (2) or units to the right of A. The coordinates are . P Example 3

Answer: The artist should place the pole at the point Find the Centroid on a Coordinate Plane Answer: The artist should place the pole at the point Check Check the distance of the centroid from point D(3, 4). The centroid should be (2) or units to the left of D. So, the coordinates of the centroid is . __ 1 3 2 Example 3

BASEBALL A fan of a local baseball team is designing a triangular sign for the upcoming game. In his design on the coordinate plane, the vertices are located at (–3, 2), (–1, –2), and (–1, 6). What are the coordinates of the point where the fan should place the pole under the triangle so that it will balance? A. B. C. (–1, 2) D. (0, 4) Example 3

Concept

Find the Orthocenter on a Coordinate Plane COORDINATE GEOMETRY The vertices of ΔHIJ are H(1, 2), I(–3, –3), and J(–5, 1). Find the coordinates of the orthocenter of ΔHIJ. Example 4

Find an equation of the altitude from The slope of Find the Orthocenter on a Coordinate Plane Find an equation of the altitude from The slope of so the slope of an altitude is Point-slope form Distributive Property Add 1 to each side. Example 4

Next, find an equation of the altitude from I to The Find the Orthocenter on a Coordinate Plane Next, find an equation of the altitude from I to The slope of so the slope of an altitude is –6. Point-slope form Distributive Property Subtract 3 from each side. Example 4

Equation of altitude from J Find the Orthocenter on a Coordinate Plane Then, solve a system of equations to find the point of intersection of the altitudes. Equation of altitude from J Substitution, Multiply each side by 5. Add 105 to each side. Add 4x to each side. Divide each side by –26. Example 4

Replace x with in one of the equations to find the y-coordinate. Find the Orthocenter on a Coordinate Plane Replace x with in one of the equations to find the y-coordinate. Rename as improper fractions. Multiply and simplify. Example 4

Answer: The coordinates of the orthocenter of ΔHIJ are Find the Orthocenter on a Coordinate Plane Answer: The coordinates of the orthocenter of ΔHIJ are Example 4

COORDINATE GEOMETRY The vertices of ΔABC are A(–2, 2), B(4, 4), and C(1, –2). Find the coordinates of the orthocenter of ΔABC. A. (1, 0) B. (0, 1) C. (–1, 1) D. (0, 0) Example 4

Concept

End of the Lesson