Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.

Slides:



Advertisements
Similar presentations
21cm cosmology T. Chang, UP, J. Peterson, P. McDonald PRL 100, (2008) UP, L. Staveley-Smith, J. Peterson, T. Chang, MNRAS, 394, 6 (2009)
Advertisements

Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Cosmology using 21 cm emission Jeff Peterson, CMU Talk 1…Update on early ionization telescopes (LOFAR, PAST, GMRT) Talk 2…Proposed Redshift survey.
Dark Energy BAO Intensity Mapping T. Chang, UP, J. Peterson, P. McDonald PRL 100, (March 5, 2008) UP, L. Staveley-Smith, J. Peterson, T. Chang arXiv:
Hydrogen 21cm Cosmology Tzu-Ching Chang (ASIAA)
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Cosmological Information Ue-Li Pen Tingting Lu Olivier Dore.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Epoch of Reionization Tomography with the CSO Wide-field C+ spectral mapping and correlation with HI Matt Bradford CSO NSF visit: October 12, 2011 CSO.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
CMB as a physics laboratory
MWA Project:. Site: Murchison Radio Observatory Australia’s proposed SKA Site Strategy: 512 Antenna “Tiles” Explore “Large N / Small D” regime Correlate.
Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
“First Light” From New Probes of the Dark Ages and Reionization Judd D. Bowman (Caltech) Hubble Fellows Symposium 2008.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Moscow cm Cosmology Collaborators: Collaborators: Rennan Barkana, Stuart Wyithe, Matias Zaldarriaga Avi Loeb Harvard University.
Yi Mao, MIT Collaborators: Max Tegmark, Alan Guth, Matias Zaldarriaga, Matt McQuinn, Oliver Zahn, Tom Faulkner, Ted Bunn, Serkan Cabi Constraining cosmological.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
Constraints on the neutrino mass by future precise CMB polarization and 21cm line observations Yoshihiko Oyama The Graduate University for Advanced Studies.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
The KAT/SKA project and Related Research Catherine Cress (UKZN/KAT/UWC)
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
21 cm Reionization Forecast and Search at GMRT
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
Exotic Physics in the Dark Ages Katie Mack Institute of Astronomy / Kavli Institute for Cosmology, University of Cambridge.
Anadian ydrogen ntensity apping xperiment CHIMECHIME CHIMECHIME WiggleZ Dark Ages Stars 13.7Gy CMB Big Bang Reionization 1100 z∞ SDSS 7Gy CHIME.
The measurement of q 0 If objects are observed at large distances of known brightness (standard candles), we can measure the amount of deceleration since.
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
Murchison Widefield Array (MWA) : Design and Status Divya Oberoi, Lenoid Benkevitch MIT Haystack Observatory doberoi, On behalf.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
The Mission  Explore the Dark Ages through the neutral hydrogen distribution  Constrain the populations of the first stars and first black holes.  Measure.
Large-Scale Structure & Surveys Max Tegmark, MIT.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Observations, Database, and Pipeline for EoR Jacqueline N. Hewitt MIT Kavli Institute for Astrophysics and Space Research Text.
Foreground Contamination and the EoR Window Nithyanandan Thyagarajan N. Udaya Shankar Ravi Subrahmanyan (Raman Research Institute, Bangalore)
Observed and Simulated Foregrounds for Reionization Studies with the Murchison Widefield Array Nithyanandan Thyagarajan, Daniel Jacobs, Judd Bowman + MWA.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
A hot topic: the 21cm line III Benedetta Ciardi MPA.
C.Carilli, AUI Board October 2006 ISAC-run three year process: Quantified ‘experiments’ for future large area cm telescopes 50 chapters, 90 authors, 25%
Probing the dark ages with a lunar radio telescope Chris Carilli, Feb 2008 Dark Ages 15 < z < 200 Reionization 6 < z < 15 last phase of cosmic evolution.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Cheng Zhao Supervisor: Charling Tao
Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 The scale frontier MT & Zaldarriaga, arXiv:
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) NNIW Dec.
Upcoming Instruments to Probe Reionization… Frank Briggs ANU.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Map-making leads to understanding When we understand the evolution from one map to another, we can understand  the sociological, economic, and political.
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
 History of early Universe; the Epoch of Reionization  Goal: Map the evolution of structure of the early Universe using the Murchison Widefield Array.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological analysis of the DR12 galaxy sample arXiv:
Cosmology from the Moon?
9/17/2018 Cosmology from Space Max Tegmark, MIT.
The History of the Universe in 60 Minutes
Springel, Frenk & White 2006, Nature, 440, 11
The Omniscope 2019/2/17 Based on a paper I’ve written with Matias Zaldarriaga which we plan to post to astro-ph once this conference ends. MT & Matias.
Future Radio Interferometers
21 cm Foreground Subtraction in the Image Plane and in the uv-Plane
Presentation transcript:

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters

par movies

Cmbgg OmOl 4% 21% 75% Using WMAP3 + SDSS LRGs:

Cmbgg OmOl Standard model parameters: Cosmology Particle physics Required Optional C = h = G = k b = q e = 1 

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl How flat is space? flat closed open Why are we cosmologists so excited?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl How flat is space?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl How flat is space?Somewhat.

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl  tot =1.003  How flat is space?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB+SN Ia CMB+LRG Beth Reid et al, arXiv

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS Planck + SDSS:  n=0.008,  r=0.012

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra

4% 75% 21% Cosmological data Cosmological Parameters

4% 75% 21% Cosmological data Cosmological Parameters ARE WE DONE?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

4% 75% 21% Cosmological data Fundamental theory ? Cosmological Parameters Nature of dark matter? Nature of dark energy? Nature of early Universe? Why these particular values?

4% 75% 21% Cosmological data Fundamental theory ? Cosmological Parameters Nature of dark matter? Nature of dark energy? Nature of early Universe? Why these particular values? Map our universe!

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Physics with 21 cm tomography

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Courtney Peterson Andy Lutomirski Tongyan Lin Adrian Liu Mike matejek Chris Williams T H E O M N I S C O P E R S

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Courtney Peterson Andy Lutomirski Tongyan Lin Adrian Liu Mike matejek Chris Williams Ed Morgan Joel Villasenor Jackie Hewitt T H E O M N I S C O P E R S

Scott Morrison T H E O M N I S C O P E R S

Scott Morrison Nevada Sanchez Henrique Pond é Oliveira Pinto Joe Lee Angelica de Oliveira-Costa

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Matias Zaldarriaga T H E O M N I S C O P E R S

Foreground modeling Foreground removal astro-ph/ , Optimal mapmaking Automatic calibration Liu et al, in prep Faster correlation , Corner turning Survey design optimization

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 What are we so excited?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/ Our observable universe

LSS Our observable universe

LSS The time frontier

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 The scale frontier

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles GMRT = Giant Metrewave Radio Telescope

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles 21CMA/PaST = Primeval Structure Telescope

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles LOFAR = Low Frequency ARray 2 Km 100 Km 32 sta. 77 sta. v v v v v v v v

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles MWA = Murchison Widefield Array

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles Cas A 3C 392 Cygnus A PAPER = Precision Array to Probe Epoch of Reionization

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles SKA = Square Kilometer Array

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Image: FORTE satellite MWA PAST/21CMA LOFARGMRTPAPER SKA ? 21 cm tomography experiments:

Participants: MIT, Harvard, Washington, Berkeley, JPL, NRAO PI: Jacqueline Hewitt, MIT LARC: Lunar Array for Radio Cosmology

The Omniscope MT & Matias Zaldarriaga, arXiv [astro-ph]

Single-dish telescope: cost  A 1.35 Sensitivity  T  (A  ) -1/2 Interferometer: cost  N 2  A 2 FFTT telescope idea: cost  A,  ~2  Telescopes as Fourier transformers How get huge sensitivity at low cost?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Tegmark & Zaldarriaga 2008 The sensitivity frontier Omniscope

LSS Our observable universe

LSS Our observable universe Mao, MT, McQuinn, Zahn & Zaldarriaga 2008 Spatial curvature: WMAP+SDSS:  tot = 0.01 Planck:  tot = cm:  tot =0.0002

LSS Our observable universe Spectral index running: Planck:  = cm  =  2 -potential:   4 -potential:  Mao, MT, McQuinn, Zahn & Zaldarriaga 2008

LSS Our observable universe Mao, MT, McQuinn, Zahn & Zaldarriaga 2008 Neutrino mass: WMAP+SDSS: m <0.3 eV +Ly  F: m <0.17 eV Oscillations m >0.04 eV Future lensing:  m ~0.03 eV 21cm:  m =0.007 eV