Lee Byung-Gook Dongseo Univ.

Slides:



Advertisements
Similar presentations
Bicubic G1 interpolation of arbitrary quad meshes using a 4-split
Advertisements

Cubic Curves CSE167: Computer Graphics Instructor: Steve Rotenberg UCSD, Fall 2006.
Advanced Computer Graphics (Spring 2005) COMS 4162, Lecture 14: Review / Subdivision Ravi Ramamoorthi Slides courtesy.
Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 10 Ravi Ramamoorthi
Advanced Graphics Lecture Six Subdivision Surfaces Alex Benton, University of Cambridge – Supported in part by Google UK, Ltd.
© University of Wisconsin, CS559 Spring 2004
Jehee Lee Seoul National University
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
Classic Subdivision Schemes. Schemes Catmull-Clark (1978) Doo-Sabin (1978) Loop (1987) Butterfly (1990) Kobbelt (1996) Mid-edge (1996 / 1997)
On Triangle/Quad Subdivision Scott Schaefer and Joe Warren TOG 22(1) 28 – 36, 2005 Reporter: Chen zhonggui
Subdivision Surfaces Introduction to Computer Graphics CSE 470/598 Arizona State University Dianne Hansford.
Subdivision Curves & Surfaces and Fractal Mountains. CS184 – Spring 2011.
CS Peter Schröder Subdivision I: The Basic Ideas.
Surfaces Chiew-Lan Tai. Surfaces 2 Reading Required Hills Section Hearn & Baker, sections 8.11, 8.13 Recommended Sections 2.1.4, , 3D Computer.
Fractal Mountains, Splines, and Subdivision Surfaces Jordan Smith UC Berkeley CS184.
Subdivision Surfaces in Character Animation Tony DeRose - Michael Kass - Tien Truong - Pixar Animation Studios - Pierce Groover March 4 th, 2003.
Surfaces Chiew-Lan Tai. Surfaces 2 Reading Required Hills Section Hearn & Baker, sections 8.11, 8.13 Recommended Sections 2.1.4, , 3D Computer.
Visualization and graphics research group CIPIC January 30, 2003Multiresolution (ECS 289L) - Winter MAPS – Multiresolution Adaptive Parameterization.
Normal based subdivision scheme for curve and surface design 杨勋年
Content Subdivision First some basics (control point polygon, mesh)
1 Subdivision Surfaces CAGD Ofir Weber. 2 Spline Surfaces Why use them?  Smooth  Good for modeling - easy to control  Compact (complex objects are.
Subdivision Overview Subdivision is a two part process Control Mesh
Subdivision Primer CS426, 2000 Robert Osada [DeRose 2000]
11/08/00 Dinesh Manocha, COMP258 Subdivision Curves & Surfaces Work of G. de Rham on Corner Cutting in 40’s and 50’s Work of Catmull/Clark and Doo/Sabin.
Scott Schaefer Joe Warren A Factored, Interpolatory Subdivision for Surfaces of Revolution Rice University.
CS Subdivision I: The Univariate Setting Peter Schröder.
Introduction to Subdivision Surfaces. Subdivision Curves and Surfaces 4 Subdivision curves –The basic concepts of subdivision. 4 Subdivision surfaces.
Smooth Spline Surfaces over Irregular Topology Hui-xia Xu Wednesday, Apr. 4, 2007.
Graphics Programming, Byung-Gook Lee, Dongseo Univ., Graphics Programming Byung-Gook Lee Dongseo Univ.
11/30/04© University of Wisconsin, CS559 Fall 2004 Last Time More modeling: –Hierarchical modeling –Instancing and Parametric Instancing –Constructive.
Ziting (Vivien) Zhou1 Drawing Graphs By Computer Graph from
Subdivision surfaces Construction and analysis Martin Reimers CMA/IFI, University of Oslo September 24th 2004.
Bspline/NURBS and Subdivision Surface Computer Graphics Lecture 15 Taku Komura.
Subdivision/Refinement Dr. S.M. Malaek Assistant: M. Younesi.
A D V A N C E D C O M P U T E R G R A P H I C S CMSC 635 January 15, 2013 Spline curves 1/23 Curves and Surfaces.
Graphics Graphics Korea University cgvr.korea.ac.kr Creating Virtual World I 김 창 헌 Department of Computer Science Korea University
4/15/04© University of Wisconsin, CS559 Spring 2004 Last Time More modeling: –Hierarchical modeling –Instancing and Parametric Instancing –Constructive.
Manuel Mesters - Subdivision Surfaces computer graphics & visualization Seminar Computer Graphics Geometric representation and processing: Subdivision.
Creating & Processing 3D Geometry Marie-Paule Cani
Introduction to Subdivision surfaces Martin Reimers CMA, University of Oslo.
Subdivision Schemes Basic idea: Start with something coarse, and refine it into smaller pieces for rendering –We have seen how subdivision may be used.
Non-Uniform Rational B-Splines NURBS. NURBS Surfaces NURBS surfaces are based on curves. The main advantage of using NURBS surfaces over polygons, is.
Subdivision Curve (and its relations to wavelets) Jyun-Ming Chen Spring 2001.
1 Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces Fuhua (Frank) Cheng University of Kentucky, Lexington, KY Junhai Yong Tsinghua University,
Procedural Models How to easily generate complex data?
Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2003 Subdivision Surfaces Greg Humphreys University of Virginia CS 445, Fall 2003.
A Note on Subdivision Kwan Pyo Ko Dongseo University
Subdivision Surfaces Dr. Scott Schaefer.
Splines Sang Il Park Sejong University. Particle Motion A curve in 3-dimensional space World coordinates.
Construction of Navau and Garcia. Basic steps Construction has two parameters: smoothness k and n > k, defining how closely the surface follows the control.
University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell Subdivision surfaces.
Computing & Information Sciences Kansas State University Lecture 30 of 42CIS 636/736: (Introduction to) Computer Graphics Lecture 30 of 42 Wednesday, 09.
Graphics Programming 2003, Lee Byung-Gook, Dongseo Univ., Graphics Programming Lee Byung-Gook Dongseo Univ.
CS559: Computer Graphics Lecture 36: Subdivision Surfaces, Fractals, and Animation Li Zhang Spring 2008 Many slides from James Kuffner’s graphics class.
CS559: Computer Graphics Lecture 33: Shape Modeling Li Zhang Spring 2008.
Subdivision Schemes. Center for Graphics and Geometric Computing, Technion What is Subdivision?  Subdivision is a process in which a poly-line/mesh is.
Graphics Programming 2003, Lee Byung-Gook, Dongseo Univ., Graphics Programming Lee Byung-Gook Dongseo Univ.
Advanced Computer Graphics
Daniil Rodin for CAGD course, 2016
Smooth Surfaces Dr. Scott Schaefer.
The Variety of Subdivision Schemes
Generalization of (2n+4)-point approximating subdivision scheme
Mask of interpolatory symmetric subdivision schemes
Subdivision: From Stationary to Non-stationary scheme.
Jeff Ballard Nick Rasmussen
Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr.
Jeff Ballard Nick Rasmussen
Last Time B-splines Project 3 was made available
Presentation transcript:

Lee Byung-Gook Dongseo Univ. http://kowon.dongseo.ac.kr/~lbg/ Subdivision Schemes Lee Byung-Gook Dongseo Univ. http://kowon.dongseo.ac.kr/~lbg/ Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Graphics Programming, Lee Byung-Gook, Dongseo Univ Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Is the scheme used here interpolating or approximating? What is Subdivision? Subdivision is a process in which a poly-line/mesh is recursively refined in order to achieve a smooth curve/surface. Two main groups of schemes: Approximating - original vertices are moved Interpolating – original vertices are unaffected Is the scheme used here interpolating or approximating? Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Frame from “Geri’s Game” by Pixar Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Curves How do You Make a Smooth Curve? Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Chaikin’s Algorithm Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting 3 : 1 1 : 3 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting – Limit Curve Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Corner Cutting The limit curve – Quadratic B-Spline Curve A control point The control polygon Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Linear B-spline Subdivision Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Quadratic B-spline Subdivision Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Cubic B-spline Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

N. Dyn 4-points Subdivision Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme 1 : 1 1 : 1 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme 1 : 8 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

4-Point Scheme The limit curve The control polygon A control point Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Comparison Non interpolatory subdivision schemes Corner Cutting The 4-point scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Theoretical Questions Given a Subdivision scheme, does it converge for all polygons? If so, does it converge to a smooth curve? Better? Does the limit surface have any singular points? How do we compute the derivative of the limit surface? Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Surfaces Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Surfaces Geri’s hand as a piecewise smooth Catmull-Clark surface Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Surfaces A surface subdivision scheme starts with a control net (i.e. vertices, edges and faces) In each iteration, the scheme constructs a refined net, increasing the number of vertices by some factor. The limit of the control vertices should be a limit surface. a scheme always consists of 2 main parts: A method to generate the topology of the new net. Rules to determine the geometry of the vertices in the new net. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

General Notations There are 3 types of new control points: Vertex points - vertices that are created in place of an old vertex. Edge points - vertices that are created on an old edge. Face points – vertices that are created inside an old face. Every scheme has rules on how (if) to create any of the above. If a scheme does not change old vertices (for example - interpolating), then it is viewed simply as if Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Doo-Sabin subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark Subdivision The mesh is the control net of a tensor product B-Spline surface. The refined mesh is also a control net, and the scheme was devised so that both nets create the same B-Spline surface. Uses face points, edge points and vertex points. The construction is incremental – First the face points are calculated, Then using the face points, the edge points are computed. Finally using both face and edge points, we calculate the vertex points. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Graphics Programming, Lee Byung-Gook, Dongseo Univ Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Catmull-Clark - results Catmull-Clark Scheme results in a surface which is almost everywhere Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop Subdivision Based on a triangular mesh Loop’s scheme does not create face points Vertex points New face Old face Edge points Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop Subdivision How Position New Vertices? Choose locations for new vertices as weighted average of original vertices in local neighborhood Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

The rule for edge points Loop Subdivision Every new vertex is a weighted average of old ones. The list of weights is called a Stencil Is this scheme approximating or interpolating? The rule for vertex points 3 1 1 1 The rule for edge points 1 1 1 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop Subdivision How Refine Mesh? Refine each triangle into 4 triangles by splitting each edge and connecting new vertices Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Box Spline Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop - Results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop - Results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop - Results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop - Results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Loop - Results Loop’s scheme results in a limit surface which is of continuity everywhere except for a finite number of singular points, in which it is . Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Butterfly Scheme Butterfly is an interpolatory scheme. Topology is the same as in Loop’s scheme. Vertex points use the location of the old vertex. Edge points use the following stencil: -w 1/2 2w Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Butterfly - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Butterfly - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Butterfly - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Butterfly - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Butterfly - results The Butterfly Scheme results in a surface which is but is not differentiable twice anywhere. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Comparison Butterfly Loop Catmull-Clark Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Kobblet sqrt(3) Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Kobblet sqrt(3) Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Kobblet sqrt(3) Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Graphics Programming, Lee Byung-Gook, Dongseo Univ Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Schemes Loop Butterfly Catmull-Clark Doo-Sabin Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Schemes Loop Butterfly Catmull-Clark Doo-Sabin Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Advantages & Difficulties Simple method for describing complex surfaces Relatively easy to implement Arbitrary topology Smoothness guarantees Multiresolution Difficulties: Intuitive specification Parameterization Intersections Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

Subdivision Schemes There are different subdivision schemes Different methods for refining topology Different rules for positioning vertices Interpolating versus approximating Face Split Vertex Split Triangular Meshes Quad. Meshes Doo-Sabin, Midege (C1) Approximating Loop (C2) Catmull-Clark (C2) Biquartic (C2) Interpolating Butterfly (C1) Kobbelt (C1) Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr