... с птичьего полета Космология Дмитрий В. Наумов ЛЯП ОИЯИ Лекция 1.

Slides:



Advertisements
Similar presentations
Chapter 18: Cosmology For a humorous approach to quarks, check out the Jefferson Lab’s game.  In Looking for the Top Quark, each player receives six quarks.
Advertisements

P1.5.4 Red-shift AQA GCSE Science A. There are two main pieces of evidence for the Big Bang: 1.The expansion of the universe 2. Cosmic microwave background.
Olber’s paradox Why isn't the night sky as uniformly bright as the surface of the Sun? If the Universe has infinitely many stars, then it should be uniformly.
UNIVERSE CHAPTER BIG BANG The big bang theory is the main cosmological model for the earliest known time of the Universe. It shows us how the universe.
Objectives: 1. relate the cosmological principle to isotropy and homgeneity of the universe. 2. understand how Hubble’s law is used to map the universe,
Chapter 28 Cosmology The Creation and Fate of the Universe.
Newton’s Hypothesis The universe is infinite, static and uniform. Proven to be incorrect by Olber’s Paradox. Olber theorised that if this was correct then.
Chapter 17 The Beginning of Time
Chapter 17: The Birth of the Universe
ORIGIN OF THE UNIVERSE P In the beginning, God created the heaven and the earth; and the earth was without form and void; and darkness was upon the face.
Objectives Distinguish the different models of the universe.
WMAP. The Wilkinson Microwave Anisotropy Probe was designed to measure the CMB. –Launched in 2001 –Ended 2010 Microwave antenna includes five frequency.
Hubble images a part of the Universe
Part 2: Formation of the Universe STARS AND GALAXIES 1.
Lecture 4. Big bang, nucleosynthesis, the lives and deaths of stars. reading: Chapter 1.
The Big Bang, Galaxies, & Stars
Evolution of the Universe (continued)
30.3 Big Bang Theory. Doppler Effect Doppler effect = apparent shift in the wavelengths of energy emitted by an energy source moving away from or towards.
17.3 The Big Bang and Inflation 17.4 Observing the Big Bang for yourself Our Goals for Learning What aspects of the universe were originally unexplained.
Origin of the Universe Have you ever heard of a little thing called the “Big Bang?”
The Evolution of the Universe Nicola Loaring. The Big Bang According to scientists the Universe began ~15 billion years ago in a hot Big Bang. At creation.
Modern Physics: Part 2. ALL Galaxies have redshifts – farther from us greater redshifts! Many other scientists made observations similar to Slipher’s.
Theory on the Formation of the Universe
Bell Ringer 8/25 You may write this week’s bell ringers on the same paper as last week’s bell ringers, just be sure to include the correct DATE!! In your.
Hubble’s Law Our goals for learning What is Hubble’s Law?
Cosmology: The Study of the Universe as a Whole Physics 360 Geol 360 Astronomy John Swez.
Key Topics Astronomy Unit. Big Bang Theory Big Bang Theory: most widely accepted theory for the origin of our universe billion States that
Dark Matter, Dark Energy, How Come Some People Think We Need It and Others Don’t and the Fate of the Universe.
Announcements The final exam will be at Noon on Monday, December 13 in Van Allen Hall LR1. The final exam will be cumulative. The final will be 40 questions,
The Birth of the Universe. Hubble Expansion and the Big Bang The fact that more distant galaxies are moving away from us more rapidly indicates that the.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
The Fate of the Universe
Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research The Cosmic Menu of Dark Matter and Dark Energy.
How the Universe got its Spots Edmund Bertschinger MIT Department of Physics.
Chapter 12 Space Exploration. Section 12.1 page 428 Explaining the Early Universe GALAXY – collection of stars, planets, gas and dust held together by.
Hubble’s galaxy classes Spheroid Dominates Disk Dominates.
The Big Bang Theory. Warm Up: Use your textbook on page 532 to describe the Big Bang Theory. What are 2 pieces of evidence for the Big Bang Theory?
The Beginning of Time: Evidence for the Big Bang & the Theory of Inflation.
The Expanding Universe. The Hubble Law The Hubble constant H o is one of the most important numbers in cosmology because it may be used to estimate the.
More to the universe than meets the eye
Chapter 18: Chapter 18: Cosmology. WHAT DO YOU THINK? What does the universe encompass? Is the universe expanding, fixed in size, or contracting? Will.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Our Universe. The universe is everything that exists including all matter and energy The universe is 13.7 billion years old. No one knows if the universe.
Cosmology (Chapter 14) NASA. Student Learning Objectives Describe the Big Bang theory Analyze possible fates of our universe.
Cosmology -- the Origin and Structure of the Universe Cosmological Principle – the Universe appears the same from all directions. There is no preferred.
Announcements Final exam is Monday, May 9, at 7:30 am. –Students with last names A-K go to 225 CB. –Students with last names L-Z go to 300 CB. –All students.
Universe Tenth Edition Chapter 25 Cosmology: The Origin and Evolution of the Universe Roger Freedman Robert Geller William Kaufmann III.
Lecture 27: The Shape of Space Astronomy Spring 2014.
Chapter 13: The Universe & Its Stars. Key Ideas – Chapter 13 1.Technology has advanced our understanding of the universe 2.Nuclear fusion powers the stars.
The Beginning of Time Review: evidence for dark matter evidence for dark matter comes from  motions of stars and gas in galaxies  motions of galaxies.
WMAP The Wilkinson Microwave Anisotropy Probe Universe.
To View Slide Show Click on “Slide Show” above –Click on “From Current Slide”
The Expanding Universe  When light or sound moves toward or away from an observer, its frequency/wavelength changes (Known as Doppler effect)  Can be.
The Origin of the Universe Chapter 20.3 Notes. What is the Universe? The universe consists of all space, matter, and energy that exists—now, in the past,
Milky Way Galaxy. Galaxy A group of stars, dust and gases held together by gravity. 170 billion galaxies in the universe 200 billion stars in a galaxy.
Chapter 20 Cosmology. Hubble Ultra Deep Field Galaxies and Cosmology A galaxy’s age, its distance, and the age of the universe are all closely related.
Discovering the Universe Eighth Edition Discovering the Universe Eighth Edition Neil F. Comins William J. Kaufmann III CHAPTER 18 Cosmology Cosmology.
Stellar Evolution Continued…. White Dwarfs Most of the fuel for fusion is used up Giant collapses because core can’t support weight of outer layers any.
The Big Bang Theory.
Astrophysics – final topics Cosmology Universe. Jeans Criterion Coldest spots in the galaxy: T ~ 10 K Composition: Mainly molecular hydrogen 1% dust EGGs.
Wilkinson Microwave Anisotropy Probe (WMAP) By Susan Creager April 20, 2006.
© 2017 Pearson Education, Inc.
Harrison B. Prosper Florida State University YSP
The Science of Creation
The Big Bang The Big Bang
The Formation of the.
Cosmology The study of the structure and evolution of the Universe as a whole. Seeks to answer questions such as: How big is the Universe? What shape is.
Formation of the Universe
The Big Bang The Big Bang
Absorption lines of a galaxy shift toward the blue end of the spectrum when it moves toward Earth. The lines shift to the red end of the spectrum when.
Presentation transcript:

... с птичьего полета Космология Дмитрий В. Наумов ЛЯП ОИЯИ Лекция 1

Содержание Гравитация Гравитация Ньютона Гравитация Эйнштейна Создание Вселенной Разбегание галактик Большой взрыв Инфляционная модель Метрика Робертсона- Уолкера Уравнения Фридмана и их решения Кривизна пространства Черные дыры Состав Вселенной Видимое вещество Темная материя Темная энергия О размерах... Космические Лучи Как детектируют КЛ КЛ сверх-высоких энергий Лекция 1 Лекция 2

Содержание Гравитация Гравитация Ньютона Гравитация Эйнштейна Создание Вселенной Разбегание галактик Большой взрыв Инфляционная модель Состав Вселенной Видимое вещество Темная материя Темная энергия О размерах... Красное смещение Закон Хаббла Космические Лучи Как детектируют КЛ КЛ сверх-высоких энергий Лекция 1 Лекция 2

Содержание Гравитация Гравитация Ньютона Гравитация Эйнштейна Создание Вселенной Разбегание галактик Большой взрыв Инфляционная модель Состав Вселенной Видимое вещество Темная материя Темная энергия О размерах... Красное смещение Эволюция Вселенной Нуклеосинтез Образование галактик и крупных структур Реликтовый микроволновой фон Эксперименты COBE и WMAP Космические Лучи Как детектируют КЛ КЛ сверх-высоких энергий Лекция 1 Лекция 2

Содержание Гравитация Гравитация Ньютона Гравитация Эйнштейна Создание Вселенной Разбегание галактик Большой взрыв Инфляционная модель Состав Вселенной Видимое вещество Темная материя Темная энергия О размерах... Проблемы стандартной модели БВ Квантовое начало Космические Лучи Как детектируют КЛ КЛ сверх-высоких энергий Лекция 1 Лекция 2

D.Scramm and M.S. Turner, ``Big Bang enters the precision era'', RMP70(1998)0303 В.Л.Гинзбург, “О некоторых успехах физики и астрономии за последние три года”, УФH172(2002)0213 В.А.Рубаков, ``Физика частиц и космология: состояние и надежды”, УФН169(1999)1299 S.Sarkar, ``Big bang nucleosynthesis and physics beyond the standard model'',RPP59(1996)1493 M.Turner, J.Tyson, ``Cosmology at the millenium'',RMP71(1999)S145 Dolgov, Ya.Zeldovich, ``Cosmology and elementary particles'',RMP53(1981)0001 A.Dolgov, ``Neutrinos in Cosmology'',PR370(2002)333 M.Maggiore, ``Gravitational Wave Experiments...'',PR331(2000)283 V.L. Ginzburg, ``What problems of physics and astrophysics...'', PhU042(1999)0353 I.L.Rozental, ``Elementary particles and cosmology'', PhU40(1997)0763 V.A. Rubakov, M.E.Saposhnikov, ``Electroweak baryon number non-conservation...'', PhU039(1996)0461 J.Ellis, ``Astropartical Physics: A personal outlook'', NPB48(1996)522 J.Ellis, ``Particles and Cosmology'',NPB35(1994)005 J.M.Uson, ``General Cosmology: Overview and outstanding problems'',NPB28A(1992)017 L.Jauneau, ``Introduction to Gravity and Cosmology'', LAL88-41 M.Kutschera, ``Introduction to Physical Cosmology'', INP-1659-PH P.Olesen, ``An introduction to cosmology'',ESHEP(1997)220 astro-ph/ , astro-ph/ , astro-ph/ astro-ph/ , astro-ph/ , astro-ph/ astro-ph/ , astro-ph/ , astro-ph/ astro-ph/ , astro-ph/ , astro-ph/ astro-ph/ , astro-ph/ , gr-qc/ gr-qc/ , hep-ph/ , hep-ph/ hep-ph/ , hep-ph/ , hep-ph/ hep-ph/ , hep-ph/ , hep-ph/ hep-ph/ , hep-th/ , hep-th/ hep-th/ Список литературы

О размерах...

Расстояние между Землей и Солнцем 150 млн. Км = A.U.

Гравитация M и m массы двух объектов, r – расстояние между ними, G = 6.67  N m 2 /kg 2 Ньютона Инерционная и гравитационная массы совпадают --> ускорение в гравитационном поле не зависит от массы!

Гравитация Эйнштейна

Тензор Риччи Тензор энергии импульса плотность Если сегодня dR/dt>0 (расшырение) и всегда  +3p>0, то d 2 R/dt 2 0 в момент t=0, R=0 Большой взрыв !!!

Изменение энергии объема = - работа против гравитации

Кривизна Пространства From Brian Schmidt’s web site,

Масса искривляет Пространство

Пример искривления изображения в гравитационном поле

Пример искривления изображения в гравитационном поле

From

Черные дыры

Если вещество звезды сосредоточено в объеме радиусом, меньше чем: R s = 2GM/c 2 Радиус Шварцшильда Горизонт событий не превышает R s Черная дыра

Черные дыры

This Chandra X-Ray Observatory image of the supermassive black hole at the Milky Way's center, Sagittarius A* was made from the longest X-ray exposure of that region to date. More than two thousand other X-ray sources were detected in the region, making this one of the richest fields ever observed. Credit: NASA/CXC/MIT/F.K.Baganoff et al. [

Создание Вселенной

From Brian Schmidt’s web site, From Создание Вселенной ✔ Хабл измерил: ✔ :H 0 = 500 km/s/Mpc ✔ Сегодня: ✔ H 0 = 65 km/s/Mpc

Создание Вселенной: Красное смещение

Возраст Вселенной

Friedmann equation k is the curvature constant *k=0: flat space, forever expanding *k>0: spherical geometry, eventually recollapsing *k<0: hyperbolic geometry, forever expanding Expansion velocity of the Universe

Density parameter  0  crit = 8  g/cm 3  1 atom per 200 liter density parameter  0  0 =1: flat space, forever expanding (open)  0 >1: spherical geometry, recollapsing (closed)  0 <1: hyperbolic geometry, forever expanding currently favored model:  0 = 0.3

k is the curvature constant *k=0: flat space *k>0: spherical geometry *k<0: hyperbolic geometry but for sufficiently large  a spherically curved universe may expand forever Friedmann's equation for  >0

How old is the Universe? A galaxy at distance d recedes at velocity v=H 0  d. When was the position of this galaxy identical to that of our galaxy? Answer: t Hubble : Hubble time. For H 0 = 65 km/s/Mpc: t Hubble = 15 Gyr

 0 =0,  =0: t Hubble =1/H 0 = 15 Gyr  0 =1,  =0: t Hubble =2/(3H 0 )= 10 Gyr open universes with 0<  0 <1,  =0 are between 10 and 15 Gyr old closed universes with  0 >1,  =0 are less than 10 Gyr old  >0 increases,  <0 decreases the age of the universe  0 =0.3,  =0.7: t Hubble =0.96/H 0 = 14.5 Gyr The age of the Universe revisited

At early epochs, the first term dominates the early universe appears to be almost flat At late epochs, the second term dominates the late universe appears to be almost empty At early epochs, the first term dominates the early universe appears to be almost flat At late epochs, the second term dominates the late universe appears to be almost empty Expansion rate of the Universe Falls off like the cube of R Falls off like the square of R

Friedmann’s equation for  >0,  0 <1 Expansion rate of the Universe Falls off like the cube of R Falls off like the square of R constant At early epochs, the first term dominates the early universe appears to be almost flat At late epochs, the second term dominates the late universe appears to be almost empty

Создание Вселенной Большой взрыв

Создание Вселенной

Создание Вселенной

Создание Вселенной: Нуклеосинтез

The structure of matter

Преобразование водорода в гелий Горячая эпоха после БВ: протоны и нейтроны несколько шагов: p + n  2 H p + 2 H  3 He n + 2 H  3 H 3 He + 3 He  4 He + 2 p некоторые боковые ветви 3 He + 3 H  7 Li 3 He + 3 He  7 Be Более тяжелые элементы образуются только в звездах

Первоначальный нуклеосинтез Result: abundance of H,He and Li is consistent but:  b ~0.04 Consistent with abundance of H, He and Li

Можем ли мы понять почему 25% He? Избыток водорода: а Избыток гелия : = 0.25 Но почему n n /n p = 1/7 ?

Можем ли мы понять почему 25% He? (N n /N p ) f = exp((m p - m n )c 2 /kT f ) p + e - ↔ n + e n + e + ↔ p + anti- e В момент равновесия При T f = K имеем (N n /N p ) = 1/6, в дальнейшем число нейтронов уменьшается за счет бета распада N n (t) = N n e -t  и становится к моменту начала нуклеосинтеза при T f = 10 9 K равным 1/7!

Создание Вселенной: Образование галактик и крупных структур Смотрим видео structform

Frame one depicts temperature fluctuations (shown as color differences) in the oldest light in the universe, as seen today by WMAP. Temperature fluctuations correspond to slight clumping of material in the infant Universe, which ultimately led to the vast structures of galaxies we see today. Frame two shows matter condensing as gravity pulls matter from regions of lower density to regions of higher density. Frame three captures the era of the first stars, 200 million years after the Big Bang. Gas has condensed and heated up to temperatures high enough to initiate nuclear fusion, the engine of the stars. Frame four shows more stars turning on. Galaxies form along those filaments first seen in frame two, a web of structure. Frame five depicts the modern era, billions upon billions of stars and galaxies... all from the seeds planted in the infant Universe.

Создание Вселенной: Реликтовый Микроволновый Фон

Nobel Prize, for what has been called “the greatest scientific discovery ever”.

In early 1990’s, COBE sees inhomogeneities in cosmic background radiation (about one part in ): the seeds of the structure seen in our present universe, and evidence for both quantum fluctuations and inflation in the extremely early universe. In addition, the peak associated with acoustic oscillations (more later) indicates that the universe is flat. [from

The Wilkinson Microwave Anisotropy Probe (WMAP) uses differential microwave radiometers that measure temperature differences between two points on the sky. [

The Wilkinson Microwave Anisotropy Probe (WMAP) observes the sky from an orbit about the L2 Sun-Earth Lagrange point, 1.5 million km from Earth. The observatory can always point away from the Sun, Earth and Moon while maintaining an unobstructed view to deep space. WMAP orbits L2 in an oval pattern every six months, and requires occasional maneuvers (usually about every 3 months) to remain in position. [

Смотрим видео

Можно ли УВИДЕТЬ звуковые колебания Вселенной ? Сжатый газ нагревается Флуктуации температуры Ф

Power Spectrum (Fingerprint of the Universe) The "angular spectrum" of the fluctuations in the WMAP full-sky map. The shapes of these two curves contain a wealth of information about the age and content of the universe and about the source of the fluctuations seen in the picture. The rise in the bottom curve at large angles (~90 degrees) is the indication that the first stars in the universe formed very quickly. Смотрим видео

Назад по Времени. WMAP, сегодня смотрит назад по времени на первый свет, который через лет после Большого Взрыва смог проникнуть через газовое вещество Вселенной (когда температура упала до 3000 К и начали образовываться атомы водорода). Около 13 млрд. Лет понадобилось свету, чтобы достичь нас. Через 200 млн. лет после БВ гигантские газовые облака под действием гравитации формировали звезды. После этого галактики и кластеры галактик образовались в пустом пространстве. Флуктуации тепмературы, видимые сегодня соответвствуют зернам, из которых выросли галактики.

Первые звезды. Первые звезды во Вселенной начали появляться уже через 200 миллионов лет после Большого Взрыва. Гораздо раньше, чем многие ученые подозревали. Содержание Вселенной. 4% атомы 23% невидимая темная материя 73% загадочная форма темной энергии (действует как анти-гравитирующая сила, приводит к ускорению расширения Вселенной)

The light that is reaching us has been stretched out as the universe has stretched, so light that was once beyond gamma rays is now reaching us in the form of microwaves. Microwaves are the same kind of electromagnetic radiation as the light we see with our eyes, but stretched out to a longer wavelength.

WMAP Conclusions We use our new detailed picture to ask: "What happened earlier to make this picture happen?" We now begin to probe the earliest moments of the universe: Inflation (the rapid expansion of the universe a fraction of a second after its birth.). We have ruled out a textbook example of a particular inflation model. But others will be supported with this new evidence.Starting from the time of our picture we can ask: "What must have happened later?” We have compared and combined the new WMAP data with other diverse cosmic measurements (galaxy clustering, Lyman-alpha cloud clustering, supernovae, etc.), and we have found a new unified understanding of the universe: *Universe is 13.7 billion years old with a margin of error of close to 1%. *First stars ignited 200 million years after the Big Bang. *Light in WMAP picture from 379,000 years after the Big Bang. *Content of the Universe: *4% Atoms, 23% Cold Dark Matter, 73% Dark energy. *The data places new constraints on the dark energy. It seems more like a "cosmological constant" than a negative-pressure energy field called "quintessence". But quintessence is not ruled out. *Fast moving neutrinos do not play any major role in the evolution of structure in the universe. They would have prevented the early clumping of gas in the universe, delaying the emergence of the first stars, in conflict with the new WMAP data. *Expansion rate (Hubble constant) value: Ho= 71 km/sec/Mpc (with a margin of error of about 5%) *New evidence for Inflation (in polarized signal) *For the theory that fits our data, the Universe will expand forever. (The nature of the dark energy is still a mystery. If it changes with time, or if other unknown and unexpected things happen in the universe, this conclusion could change.)

Состав Вселенной

From

Evidence for a mysterious dark energy in the universe: Gazing to the far reaches of space and time, NASA's Hubble Space Telescope identified the farthest stellar explosion ever seen, a supernova that erupted 10 billion years ago. By examining the glow from this dying star, astronomers have amassed more evidence that a mysterious, repulsive force is at work in the cosmos, making galaxies rush ever faster away from each other. [

From Brian Schmidt’s web site,

The Four Pillars of the Standard Cosmology "The evolution of the world can be compared to a display of fireworks that has just ended; some few red wisps, ashes and smoke. Standing on a cooled cinder, we see the slow fading of the suns, and we try to recall the vanishing brilliance of the origin of the worlds." Lemaitre. The four key observational successes of the standard Hot Big Bang model are the following: Expansion of the Universe Origin of the cosmic background radiation Nucleosynthesis of the light elements Formation of galaxies and large-scale structure The Big Bang model makes accurate and scientifically testable hypotheses in each of these areas and there is remarkable agreement with the observational data. from

Указание на темную материю

A galaxy like the Milky Way or Andromeda has a total visible mass of about 6  M sun. The rotation velocity is ~220 km/sec The radius about ~30 kpc Newton:  total mass: 3.3  M sun  ~5 times more mass than visible Численные оценки