What is a system of equations? A system of equations is when you have two or more equations using the same variables. The solution to the system is the.

Slides:



Advertisements
Similar presentations
Prerequisite Skills Review
Advertisements

6.1 Solving Systems Of Equations By Graphing
7.5 – Special Linear Systems
Objective The student will be able to: solve systems of equations by graphing. SOL: A.4e Designed by Skip Tyler, Varina High School.
Systems of Equations.
Warm Up Write down objective and homework in agenda
Warm Up Is the ordered pair a solution to the equation 2x – 3y = 5?
7.1 Graphing Linear Systems
Warm-Up: Vocabulary Match-up (Review)
Solve systems of equations by graphing.
Warm Up Graph the lines on the same grid and identify the point where they meet. 1. y=2x-2 2. y=x+1.
Do Now - Review Find the solution to the system of equations: x – y = 3 x + y = 5.
SOLVING SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES.
7.1 Solving Systems by Graphing. 7.1 – Solve by Graphing Goals / “I can…” Solve systems by graphing Analyze special types of systems.
Systems of Linear Equations Using a Graph to Solve.
Objective I Can: solve systems of equations by graphing.
AccPeCalc Matrices review Definition of an Inverse Given a n x n matrix A, if there exists an inverse (A -1 ) of matrix A then A A -1 = A -1 A =
 What is the slope of the line that passes through the following points. 1.(-2, 5) (1, 4)  Identify the slope and y -intercept of each equation. 2.y.
This screen shows two lines which have exactly one point in common. The common point when substituted into the equation of each line makes that equation.
Using Substitution – Solve the system of linear equations. 1.
What is a system of equations? A system of equations is when you have two or more equations using the same variables. The solution to the system.
Lesson 7.1 Solving Systems of Equations by Graphing.
Module 1 Lesson 5 SOLVING SYSTEMS OF EQUATIONS AND INEQUALITIES.
Systems of Linear Equations A system of linear equations consists of two or more linear equations. We will focus on only two equations at a time. The solution.
Solving Systems By Graphing. Warm – Up! 1. What are the 2 forms that equations can be in? 2. Graph the following two lines and give their x-intercept.
Systems of Linear Equations. Solve a System of Equations by Graphing Objectives: Solve a System of Equations by Graphing Standards: Learn and apply geometric.
Objective The student will be able to: solve systems of equations by graphing.
Do Now 1) 2). Systems of Equations - Graphing System of Equations – two or more equations together. On the graph, the solution to a system of linear equations.
Prerequisite Skills Review 1.) Simplify: 8r + (-64r) 2.) Solve: 3x + 7(x – 1) = 23 3.) Decide whether the ordered pair (3, -7) is a solution of the equation.
Prerequisite Skills Review 1.) Simplify: 8r + (-64r) 2.) Solve: 3x + 7(x – 1) = 23 3.) Decide whether the ordered pair (3, -7) is a solution of the equation.
5-1 Solving Systems by Graphing. Geogebra Solving a System by Graphing Solving a System by Graphing (2)
Evaluate each expression for x = 1 and y = –3. 1. x – 4y 2. –2x + y Write each expression in slope-intercept form. 3. y – x = x + 3y = = 5y.
objective I Can state the first step for solving systems. I Can solve systems of equations by graphing, substitution or elimination.
Starter Graph the equation & inequalities: y = 2x + 1 Y < 2x + 1
The student will be able to:
The student will be able to:
The student will be able to:
Bellringer Graph the inequality 2x + 8 > 4 on a number line. Explain each step of graphing the inequality including: how you solved the inequality why.
1/22/14 Watch the following video Read through the following notes
The student will be able to:
Solve Systems of Equations
The student will be able to:
The student will be able to:
Lesson 7.1 Solving Systems of Equations by Graphing
The student will be able to:
Graph the equation..
Systems of Equations Solving by Graphing.
Graphing Systems of Equations.
What is a system of equations?
Math 1201-Unit:7 Systems of Linear equations
The student will be able to:
Chapter 4 – Linear Systems
System of Linear Equations:
The student will be able to:
The student will be able to:
Solve Systems by Graphing
The student will be able to:
Review: Graphing an Equation
The student will be able to:
The student will be able to:
Graphing Systems of Equations.
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
Chapter 3.1 Solving Linear Systems by Graphing
6-1 System of Equations (Graphing)
The student will be able to:
The student will be able to:
Presentation transcript:

What is a system of equations? A system of equations is when you have two or more equations using the same variables. The solution to the system is the point that satisfies ALL of the equations. This point will be an ordered pair. When graphing, you will encounter three possibilities.

Intersecting Lines The point where the lines intersect is your solution. The solution of this graph is (1, 2) (1,2)

Parallel Lines These lines never intersect! Since the lines never cross, there is NO SOLUTION! Parallel lines have the same slope with different y-intercepts.

Coinciding Lines These lines are the same! Since the lines are on top of each other, there are INFINITELY MANY SOLUTIONS! Coinciding lines have the same slope and y-intercepts.

What is the solution of the system graphed below? 1. (2, -2) 2. (-2, 2) 3. No solution 4. Infinitely many solutions

1) Find the solution to the following system: 2x + y = 4 x - y = 2 Graph both equations using your calculator

Graph the equations. 2x + y = 4 x - y = 2 Where do the lines intersect? 2x + y = 4 x – y = 2

Check your answer! To check your answer, plug the point back into both equations. 2x + y = 4 2(2) + (0) = 4 x - y = 2 (2) – (0) = 2

2) Find the solution to the following system: y = 2x – 3 -2x + y = 1 Graph both equations. Put both equations in slope-intercept or standard form. Graph using your calculator

Graph the equations. y = 2x – 3 y = 2x + 1 Where do the lines intersect? Notice that the slopes are the same with different y-intercepts. If you recognize this early, you don’t have to graph them!

What is the solution of this system? 3x – y = 8 2y = 6x (3, 1) 2. (4, 4) 3. No solution 4. Infinitely many solutions

Solving a system of equations by graphing. Let's summarize! There are 3 steps to solving a system using a graph. Step 1: Graph both equations. Step 2: Do the graphs intersect? Step 3: Check your solution. Put your equation in slope intercept form and graph using your calculator This is the solution! LABEL the solution! Substitute the x and y values into both equations to verify the point is a solution to both equations.