WP6 status Paolo Fessia. Summary Status of the WP6 and change of WP coordinator Lowβ quadrupole status Corrector status Cryostat status.

Slides:



Advertisements
Similar presentations
24/01/08Energy deposition, LIUWG, Elena Wildner1 Upgrade phase 1: Energy deposition in the triplet Elena Wildner Francesco Cerutti Marco Mauri.
Advertisements

Cable inventory, relative measurements and 1 st mechanical computations STUDY OF THE QUADRUPOLE COLLAR STRUCTURE P. Fessia, F. Regis Magnets, Cryostats.
Superconducting Large Bore Sextupole for ILC
HL-LHC: UPDATE ON MAGNETS
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
Development of the EuCARD Nb 3 Sn Dipole Magnet FRESCA2 P. Ferracin, M. Devaux, M. Durante, P. Fazilleau, P. Fessia, P. Manil, A. Milanese, J. E. Munoz.
First approaches J. García, F. Toral, J. Munilla – CIEMAT.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
LHC IR UPGRADE - PHASE I CORRECTOR STATUS UPDATE N. Dalexandro, N. Elias, M. Karppinen, J. Mazet, J-C. Perez, D. Smekens, G. Trachez 03/02/10M. Karppinen.
L. Fiscarelli, S. Izquierdo Bermudez, O. Dunkel, S. Russenschuck, G. Willering, J. Feuvrier 22 nd September 2015.
Fred Nobrega, Nikolai Andreev 21 September, 2015.
Triplet status and plans P. Ferracin, G. Ambrosio, M. Anerella, A. Ballarino, B. Bordini, F. Borgnolutti, R. Bossert, D. Cheng, D.R. Dietderich, B. Favrat,
MQXF Design and Conductor Requirements P. Ferracin MQXF Conductor Review November 5-6, 2014 CERN.
Susana Izquierdo Bermudez. Contents 1. Introduction 2. Coil cross section 3. Magnet parameters at operation conditions 1. Peak field 2. Physical and magnetic.
CERN Accelerator School Superconductivity for Accelerators Case study 1 Paolo Ferracin ( ) European Organization for Nuclear Research.
CERN Accelerator School Superconductivity for Accelerators Case study introduction Paolo Ferracin CERN, Geneva Claire Antoine
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
Magnet design, final parameters Paolo Ferracin and Attilio Milanese EuCARD ESAC review for the FRESCA2 dipole CERN March, 2012.
LARP Collaboration Meeting, April 26-28, 2006Gian Luca Sabbi HQ Design Study (WBS ) LARP Collaboration Meeting April 26-28, 2006 N. Andreev, E.
New options for the new D1 magnet Qingjin Xu
Susana Izquierdo Bermudez, Lucio Fiscarelli. Susana Izquierdo Bermudez Contents Transfer function Geometric Allowed harmonics Non allowed harmonics Inter.
CERN Accelerator School Superconductivity for Accelerators Case study 3 Paolo Ferracin ( ) European Organization for Nuclear Research.
Update on Q4 DSM/IRFU/SACM The HiLumi LHC Design Study (a sub-system of HL-LHC) is partly funded by the European Commission within the Framework Programme.
16 T Dipole Design Options: Input Parameters and Evaluation Criteria F. Toral - CIEMAT CIEMAT-VC, Sept. 4th, 2015.
ECC Clément Lorin – Maria Durante Acknowledgements: Fresca2 team.
LHC Interaction Region Upgrade Phase I: the WP4. Summary Organization and management of the work for the WP4 Status of the quadrupole conceptual design.
Q4 MAGNETS FOR HL-LHC J.M. Rifflet, M. Segreti, E. Todesco WP3 - Q4 magnets for HL-LHC 5th Joint HiLumi LHC-LARP Annual meeting Research supported.
Davide Tommasini EuroCirCol WP5 : Work Distribution June 3 rd, 2015.
Shielding the 140 mm option F. Cerutti, L.S. Esposito on behalf of CERN FLUKA team.
4th Joint HiLumi LHC-LARP Annual Meeting D2 Design, Status, Plan P.Fabbricatore & S.Farinon INFN Genova Presented by E.Todesco (CERN)  INFN Genova is.
Cosine-theta configurations for S.C. Dipole Massimo Sorbi on behalf of: INFN LASA & Genova Team Giovanni Bellomo, Pasquale Fabbricarore, Stefania Farinon,
DESIGN STUDIES IR Magnet Design P. Wanderer LARP Collaboration Meeting April 27, 2006.
E. Todesco LAYOUT FOR INTERACTION REGIONS IN HI LUMI LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R. De Maria,
HL-LHC Meeting, November 2013D2 Status and Plans – G. Sabbi 1 D2 Conceptual Design Status and Next Steps G. Sabbi, X. Wang High Luminosity LHC Annual Meeting.
First Q4 cold mass engineering follow up meeting 16/03/2016 Q4 Status update H. Felice, M. Segreti, D. Simon and JM. Rifflet.
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
Superconducting Cryogen Free Splittable Quadrupole for Linear Accelerators Progress Report V. Kashikhin for the FNAL Superconducting Magnet Team (presented.
Preliminary analysis of a 16 T sc dipole with cos-theta lay-out INFN team October 2015.
Ranko Ostojic AT/MEL 1.Beam heat loads 2.Magnet design issues related to heat loads.
CERN, 11th November 2011 Hi-lumi meeting
Massimo Sorbi on behalf of INFN team:
MQXC Nb-Ti 120mm 120T/m 2m models
Hervé Allain, R. van Weelderen (CERN)
Hervé Allain, R. van Weelderen (CERN)
SLHC –PP WP6 LHC IR Upgrade - Phase I.
Hervé Allain, R. van Weelderen (CERN)
Development of the Canted Cosine Theta Superconducting Magnet
F. Borgnolutti, P. Fessia and E. Todesco TE-MSC Acknowledgements
Hervé Allain, R. van Weelderen (CERN)
EuroCirCol: 16T dipole based on common coils
FCC-hh 16 T, 1.9 K INFN Team October 2015.
the MDP High Field Dipole Demonstrator
D2 and Q4 orbit corrector status
Introduction to the technical content The Q4 magnet (MQYY) for HL-LHC
Yingshun Zhu Accelerator Center, Magnet Group
Large aperture Q4 M. Segreti, J.M. Rifflet
MQXF coil cross-section status
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
Upgrade phase 1: Energy deposition in the triplet
P.Fabbricatore & S.Farinon
HL LHC WP3 (magnets) TASK 2 ADVANCEMENT
Large aperture Q4 M. Segreti, J.M. Rifflet
Cooling aspects for Nb3Sn Inner Triplet quadrupoles and D1
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Q4 development M. Segreti, J.M. Rifflet, E. Todesco
J. García, F. Toral (CIEMAT) P. Fessia (CERN)
CEPC Final Focus Superconducting Quadrupole and Anti-solenoid Magnets
Cross-section of the 150 mm aperture case
Presentation transcript:

WP6 status Paolo Fessia

Summary Status of the WP6 and change of WP coordinator Lowβ quadrupole status Corrector status Cryostat status

Status and change of WP6 leader I Milestones – 6.1 “ Component qualification” fulfilled – 6.2 “ Basic magnet design” in preparation (delay 1 month) Deliverable – 6.1 “Basic Triplet Design” Main report written and published

Status and change of WP6 leader II Stephan Russenschuck is taking over the responsibility in order to guarantee adequate follow up despite 3-4 consolidation activities Due to the 3-4 incident 6 months delay have been matured up to now. It is very probable that with the partners we need to revise the plan for this work package according to the possible re-scheduling of project

Lowβ quadrupole CERN CIEMAT STFC

Enhanced insulation Courtesy D. Richter P. Paolo Granieri

MQXC cross sections and iron yoke with heat exchanger(s) Two possible solutions for heat exchanger proposed by the cryogenic team: 1)2 heat exchanger in parallel inner diameter 71 mm (1 st eval. wall thickness 2.5 mm). Hole diameter 80 mm 2)1 heat exchanger inner diameter 100 mm (1 st eval. wall thickness 3.5 mm). Hole diameter 110 mm Both are large holes in the iron that affect transfer function and field quality We can consider 2 possible configurations 1)Holes along the 2 mid-planes (larger effect on the transfer function) 2)Holes at 45 ⁰ We prefer solution with 1 heat exchanger on the vertical mid plane because of 1)Simpler interconnect 2)Standardization of cold masses respect 1 heat exchanger at 45 ⁰ Courtesy F. Borgnolutti

MQXC V24 Cables and Insulations Dimensions Cables dimensions Critical current – Cable 01 (inner layer): T (4680 A/T) – Cable 02 (outer layer): T (4050 A/T) Mid-plane and inter-layer thickness – Inter-layer thickness of 0.5mm – Mid-plane thickness Layer 1 : mm Layer 2 : mm w (mm) thick in (mm) thick out (mm) rad (mm) az (mm) cable cable az rad w Thick in Thick out 0.10 mm

MQXC V24 Coil Cross-Section Coil blocks features Angular position of the point 1 & 2 (mechanical requirement: angles < 41º) – Point 1: ~35º – Point 2: ~26º MQXC V24 12 Block NºNb Condr (mm)φ (º)γ (º)cable type Cable Cable Cable Cable 02 Courtesy F. Borgnolutti

MQXC V24 Effect of a slot in the iron on the magnetic field quality Odd multipoles are not affected Only even multipoles b 4, b 6, b 8 and b 10 are affected (multipole variation higher than unit) gap 1mmgap 2mmgap 3mm Δ b Δ b Δ b Δ b gap Courtesy F. Borgnolutti

NCS head design

Peak field in the head, 30 mm of coil more and a lot more of margin in the head straight partheadB peakss field% ss cur no Iron Yoke cable 01 BS cb01 BS cable 02 BS cb02 BS unsat Yoke cable 01 BS17.3 cb01 BS cable 02 BS cb02 BS real Yoke cable 01 BS cb01 BS cable 02 BS36.6 cb02 BS Lmag no yokeunsat yokereal iron Uncertainty: systematic coil length error 3 mm-> shift between heads->+/-0.9 Δb6 Random: variation coil length 1σ 2mm-> shift between heads->+/-0.6 Δb6 This gives an uncertainty of +/ for a straight part of 7000 mm and a random of We will neglect it b b b

Courtesy F. Borgnolutti

Protection Study Nominal CurrentHalf Current SetupT peakMIITsT peakMIITs Dump resistor 40 mOhm, 10 ms delay ms extra delay Hot spot in outer layer only half of the heaters ms extra delay only half of the heaters Dump Resistor Hot spot close to heater + Dump Resistor, half of heaters Heater failure uncritical 14 Courtesy N. Schwerg

Collar thickness scaling based on MQXB Aperture radius [mm]Collar thickness [mm] Scaling based on radial collar displacement The collar width is obtained by solving:

FE analysis – radial displacement Courtesy F. Regis

Studying options Courtesy M. Segretti

Confirming 1 st analysis and going beyond Courtesy M. Segretti

Correctors CERN CIEMAT STFC

Corrector Package: Status Courtesy M. Karppinen

Unit Integrated fieldTm6 Nominal fieldT4.2 Mag. lengthm1.42 Nominal currentA2500 Stored energykJ240 Self inductancemH77 Working point<75% Cable width/mid-heightmm4.37 / Total lengthm1.8 AperturemmØ140 Total masskg~2700 Cable: 18 X ø0.48 mm strand ø6 µm filaments Cu/Sc = 1.75 Polyimide insulation (80 µm) Strand stock for off magnets MCBX Parameters Courtesy M. Karppinen

Oct-2008M. Karppinen AT/MCS22 MQSX: Low current version Field 40 mm10 % of I nom I nom a 6 (units) a 10 (units) a 14 (units) Courtesy M. Karppinen

MQSX: High current version Field 40 mm10 % of I nom I nom a 6 (units) a 10 (units) a 14 (units) Courtesy M. Karppinen

Cryostat CNRS CERN support

INNER TRIPLET QUADRUPOLE CRYOSTAT First draft drawing from CNRS