Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)

Slides:



Advertisements
Similar presentations
Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.
Advertisements

Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
Non-Fickian diffusion and Minimal Tau Approximation from numerical turbulence A.Brandenburg 1, P. Käpylä 2,3, A. Mohammed 4 1 Nordita, Copenhagen, Denmark.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
“The interaction of a giant planet with a disc with MHD turbulence II: The interaction of the planet with the disc” Papaloizou & Nelson 2003, MNRAS 339.
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
“Physics at the End of the Galactic Cosmic-Ray Spectrum” Aspen, CO 4/28/05 Diffusive Shock Acceleration of High-Energy Cosmic Rays The origin of the very-highest-energy.
Does hyperviscosity spoil the inertial range? A. Brandenburg, N. E. L. Haugen Phys. Rev. E astro-ph/
Emerging Flux Simulations Bob Stein A.Lagerfjard Å. Nordlund D. Benson D. Georgobiani 1.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
Initial Analysis of the Large-Scale Stein-Nordlund Simulations Dali Georgobiani Formerly at: Center for Turbulence Research Stanford University/ NASA Presenting.
3-D Large Eddy Simulation for Jet Noise Prediction A.Uzun, G. Blaisdell, A. Lyrintzis School of Aeronautics and Astronautics Purdue University Funded by.
Solar Magneto-Convection: Structure & Dynamics Robert Stein - Mich. State Univ. Aake Nordlund - NBIfAFG.
Excitation of Oscillations in the Sun and Stars Bob Stein - MSU Dali Georgobiani - MSU Regner Trampedach - MSU Martin Asplund - ANU Hans-Gunther Ludwig.
Super-granulation Scale Convection Simulations Robert Stein, David Benson - Mich. State Univ. Aake Nordlund - Niels Bohr Institute.
SSL (UC Berkeley): Prospective Codes to Transfer to the CCMC Developers: W.P. Abbett, D.J. Bercik, G.H. Fisher, B.T. Welsch, and Y. Fan (HAO/NCAR)
Chamber Dynamic Response Modeling Zoran Dragojlovic.
Surface Integral Methods for Jet Aeroacoustics Anastasios (Tasos) Lyrintzis Aeronautics & Astronautics Purdue University West Lafayette, IN
The Pencil Code -- a high order MPI code for MHD turbulence Anders Johansen (Sterrewacht Leiden)‏ Axel Brandenburg (NORDITA, Stockholm)‏ Wolfgang Dobler.
Magneto-hydrodynamic turbulence: from the ISM to discs
Zhaorui Li and Farhad Jaberi Department of Mechanical Engineering Michigan State University East Lansing, Michigan Large-Scale Simulations of High Speed.
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
Stratified Magnetohydrodynamics Accelerated Using GPUs:SMAUG.
How long can left and right handed life forms coexist? Axel Brandenburg, Anja Andersen, Susanne Höfner, Martin Nilsson, Tuomas Multamäki (Nordita) Orig.
Magnetic field generation on long time scales Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Magnetic dynamo over different astrophysical scales Axel Brandenburg & Fabio Del Sordo (Nordita) with contributions from many others seed field primordial.
Critical issues to get right about stellar dynamos Axel Brandenburg (Nordita, Copenhagen) Shukurov et al. (2006, A&A 448, L33) Schekochihin et al. (2005,
Magneto-rotational instability Axel Brandenburg (Nordita, Copenhagen)
High-performance multi-user code development with Google Code  Current status  (...just google for Pencil Code)
Efficient Integration of Large Stiff Systems of ODEs Using Exponential Integrators M. Tokman, M. Tokman, University of California, Merced 2 hrs 1.5 hrs.
Modelling Tsunami Waves using Smoothed Particle Hydrodynamics (SPH) R.A. DALRYMPLE and B.D. ROGERS Department of Civil Engineering, Johns Hopkins University.
Accretion disc dynamos B. von Rekowski, A. Brandenburg, 2004, A&A 420, B. von Rekowski, A. Brandenburg, W. Dobler, A. Shukurov, 2003 A&A 398,
Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg  Calgary) Tarek.
Decay of a simulated bipolar field in the solar surface layers Alexander Vögler Robert H. Cameron Christoph U. Keller Manfred Schüssler Max-Planck-Institute.
10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, May, Refraction Corrections for Surface Integral Methods in Jet Aeroacoustics FongLoon.
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Large Scale Dynamo Action in MRI Disks Role of stratification Dynamo cycles Mean-field interpretation Incoherent alpha-shear dynamo Axel Brandenburg (Nordita,
Direct simulation of planetary and stellar dynamos II. Future challenges (maintenance of differential rotation) Gary A Glatzmaier University of California,
Astrophysical Magnetism Axel Brandenburg (Nordita, Stockholm)
Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear.
Double diffusive mixing (thermohaline convection) 1. Semiconvection ( ⇋ diffusive convection) 2. saltfingering ( ⇋ thermohaline mixing) coincidences make.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson.
High-order codes for astrophysical turbulence
Self-assembly of shallow magnetic spots through strongly stratified turbulence Axel Brandenburg (Nordita/Stockholm) Kemel+12 Brandenburg+13 Warnecke+11.
Simple Radiative Transfer in Decomposed Domains Tobi Heinemann Åke Nordlund Axel Brandenburg Wolfgang Dobler.
1 Parallel Applications Computer Architecture Ning Hu, Stefan Niculescu & Vahe Poladian November 22, 2002.
Self-organized magnetic structures in computational astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+13Warnecke+11 Käpylä+12.
Statistical Properties (PS, PDF) of Density Fields in Isothermal Hydrodynamic Turbulent Flows Jongsoo Kim Korea Astronomy and Space Science Institute Collaborators:
Dynamo action in shear flow turbulence Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg.
Turbulent transport coefficients from numerical experiments Axel Brandenburg & Matthias Rheinhardt (Nordita, Stockholm) Extracting concepts from grand.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
Turbulence research at Nordita 1.Bottleneck effect 2.Magnetic fields (active vector) 3.Passive scalar diffusion Haugen & Brandenburg (2006, Phys. Fl. 18,
Prandtl number dependence of magnetic-to-kinetic dissipation 1.What gets in, will get out 2.Even for vanishing viscosity 3.What if magnetic fields 4. contribute?
Simulated Solar Plages Robert Stein, David Benson - Mich. State Univ. USA Mats Carlsson - University of Oslo, NO Bart De Pontieu - Lockheed Martin Solar.
H. Isobe Plasma seminar 2004/06/16 1. Explaining the latitudinal distribution of sunspots with deep meridional flow D. Nandy and A.R. Choudhhuri 2002,
Application of Compact- Reconstruction WENO Schemes to the Navier-Stokes Equations Alfred Gessow Rotorcraft Center Aerospace Engineering Department University.
Pencil Code: multi-purpose and multi-user maintained Axel Brandenburg (Nordita, Stockholm) Wolfgang Dobler (Univ. Calgary) and now many more…. (...just.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
Physical conditions in astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Overview of dynamos in stars and galaxies
Simulations and radiative diagnostics of turbulence and wave phenomena in the magnetised solar photosphere S. Shelyag Astrophysics Research Centre Queen’s.
Numerical Simulations of Solar Magneto-Convection
Convergence in Computational Science
Large scale simulations of astrophysical turbulence
High Accuracy Schemes for Inviscid Traffic Models
Non linear evolution of 3D magnetic reconnection in slab geometry
Energy spectra of small scale dynamos with large Reynolds numbers
Low Order Methods for Simulation of Turbulence in Complex Geometries
The radiation module  Current status 
Presentation transcript:

Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg) Antony Mee (Univ. Newcastle) Nils Haugen (NTNU, Trondheim) etc. (...just google for Pencil Code)

2 Pencil Code Started in Sept with Wolfgang Dobler High order (6 th order in space, 3 rd order in time) Cache & memory efficient MPI, can run PacxMPI (across countries!) Maintained/developed by many people (CVS!) Automatic validation (over night or any time) Max resolution so far , 256 procs

3 Pencil formulation In CRAY days: worked with full chunks f(nx,ny,nz,nvar) –Now, on SGI, nearly 100% cache misses Instead work with f(nx,nvar), i.e. one nx-pencil No cache misses, negligible work space, just 2N –Can keep all components of derivative tensors Communication before sub-timestep Then evaluate all derivatives, e.g. call curl(f,iA,B) –Vector potential A=f(:,:,:,iAx:iAz), B=B(nx,3)

4 Switch modules magnetic or nomagnetic (e.g. just hydro) hydro or nohydro (e.g. kinematic dynamo) density or nodensity (burgulence) entropy or noentropy (e.g. isothermal) radiation or noradiation (solar convection, discs) dustvelocity or nodustvelocity (planetesimals) Coagulation, reaction equations Homochirality (reaction-diffusion-advection equations) Other physics modules: MHD, radiation, partial ionization, chemical reactions, selfgravity

5 Pencil Code check-ins

6 High-order schemes Alternative to spectral or compact schemes –Efficiently parallelized, no transpose necessary –No restriction on boundary conditions –Curvilinear coordinates possible (except for singularities) 6th order central differences in space Non-conservative scheme –Allows use of logarithmic density and entropy –Copes well with strong stratification and temperature contrasts

7 (i) High-order spatial schemes Main advantage: low phase errors

8 Wavenumber characteristics

9 Higher order – less viscosity

10 Less viscosity – also in shocks

11 (ii) High-order temporal schemes Main advantage: low amplitude errors 3 rd order 2 nd order 1 st order 2N-RK3 scheme (Williamson 1980)

12 Shock tube test

13 Hyperviscous, Smagorinsky, normal Inertial range unaffected by artificial diffusion Haugen & Brandenburg (PRE, astro-ph/ ) height of bottleneck increased onset of bottleneck at same position

processor run at

15 MHD equations Induction Equation: Magn. Vector potential Momentum and Continuity eqns

16 Vector potential B=curlA, advantage: divB=0 J=curlB=curl(curlA) =curl2A Not a disadvantage: consider Alfven waves B-formulation A-formulation 2 nd der once is better than 1 st der twice!

17 Comparison of A and B methods

18 Wallclock time versus processor # nearly linear Scaling 100 Mb/s shows limitations Gb/s no limitation

19 Sensitivity to layout on Linux clusters yprox x zproc 4 x 32  1 (speed) 8 x 16  3 times slower 16 x 8  17 times slower Gigabit uplink 100 Mbit link only 24 procs per hub

20 Why this sensitivity to layout? All processors need to communicate with processors outside to group of 24

21 Use exactly 4 columns Only 2 x 4 = 8 processors need to communicate outside the group of 24  optimal use of speed ratio between 100 Mb ethernet switch and 1 Gb uplink

22 Fragmentation over many switches

23 Pre-processed data for animations

24 Ma=10 supersonic turbulence

25 Animation of B vectors

26 Animation of energy spectra Very long run at resolution

27 MRI turbulence MRI = magnetorotational instability w/o hypervisc. t = 600 = 20 orbits w/o hypervisc.  t = 60 = 2 orbits

28 Fully convective star

29 Geodynamo simulation

30 Homochirality: competition of left/right Reaction-diffusion equation

31Conclusions Subgrid scale modeling can be unsafe (some problems) –shallower spectra, longer time scales, different saturation amplitudes (in helical dynamos) High order schemes –Low phase and amplitude errors –Need less viscosity 100 MB link close to bandwidth limit Comparable to and now faster than Origin 2x faster with GB switch 100 MB switches with GB uplink +/- optimal

32 Transfer equation & parallelization Analytic Solution: Ray direction Intrinsic Calculation Processors

33 The Transfer Equation & Parallelization Analytic Solution: Ray direction Communication Processors

34 The Transfer Equation & Parallelization Analytic Solution: Ray direction Processors Intrinsic Calculation

35 Current implementation Plasma composed of H and He Only hydrogen ionization Only H - opacity, calculated analytically No need for look-up tables Ray directions determined by grid geometry No interpolation is needed

36 Convection with radiation