EEP03: International Workshop on Probing Nucleons and Nuclei via the (e,e'p) Reaction October 14-17, 2003 Grenoble, France Overview of the (e,e'p) Reaction.

Slides:



Advertisements
Similar presentations
Detailed Study of the 4 He Nuclei through Response Function Separations at High Momentum Transfers Spokespersons Fatiha Benmokhtar U. Maryland, College.
Advertisements

Experiment E (e,e'p) Studies of the Deuteron at High Q 2 P.E. Ulmer Old Dominion University Spokespersons: W. Boeglin, M. Jones, A. Klein, P. Ulmer.
A precise extraction of the induced polarization in 4 He(e,e’p) 3 H from E Simona Malace University of South Carolina Outline.
JLab_Phys_Semin_Dec05 K. Egiyan Today’s Nucleonic Picture of Nuclei Kim Egiyan Yerevan Physics Institute, Armenia and Jefferson Lab, USA.
Onset of Scaling in Exclusive Processes Marco Mirazita Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati First Workshop on Quark-Hadron.
Disentangling the EMC effect ? Eli Piasetzky Tel Aviv University, Israel The EMC effect is 30 years old.
Few-body systems as neutron targets A. Fix (Tomsk polytechnic university) 1.
Hypernuclear Production in proton- and pion- nucleus Collisions: A Fully Relativistic Description Radhey Shyam Saha Institute of Nuclear Physics, Kolkata,
DNP Long Range Plan January Nuclei at Short Distance Scale Ronald Ransome Rutgers, The State University of New Jersey Piscataway, NJ.
Proton, Pion and Kaon Transparency Measurements Overview of existing (& new kaon!) transparency data Questions: A-dependent analysis – any improvements.
The Size and Shape of the Deuteron The deuteron is not a spherical nucleus. In the standard proton-neutron picture of this simplest nucleus, its shape.
Eli Piasetzky Tel Aviv University, ISRAEL Short Range Correlations and the EMC Effect Work done in collaboration with: L. B. Weinstein (ODU) D. Higinbotham,
University of British Columbia July, 2010 Eli Piasetzky Tel Aviv University, ISRAEL Nuclear Studies with Hard Knockout Reactions Incident electron Scattered.
Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.
Proton and Neutron Momentum Distributions in A=3 Asymmetric Nuclei PAC-42, July 30 th, Proposal PR Spokespersons: O. Hen (TAU), L. B. Weinstein.
African Summer School 2012 Connecting the SRC & EMC Effects by.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
Navaphon Muangma (Tai) “Hall A Meeting” June 2012 E :Status Report Nucleon-Nucleon Short-Range Correlation (NN SRC) on He 4 target 1.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.
Does a nucleon appears different when inside a nucleus ? Patricia Solvignon Argonne National Laboratory Postdoctoral Research Symposium September 11-12,
Proton Recoil Polarization in the 4 He(e,e’p) 3 H, 2 H(e,e’p)n, and 1 H(e,e’p) Reactions SHMS Commissioning Session, Hall C Workshop. August 20, 2011.
Identified Particle Ratios at large p T in Au+Au collisions at  s NN = 200 GeV Matthew A. C. Lamont for the STAR Collaboration - Talk Outline - Physics.
Interpretation of recent JLab results on quasi elastic (e,e ’ p) reactions off few- nucleon systems INPC2007, Tokyo, 6 June, 2007 H. Morita, Sapporo Gakuin.
Photodisintegration of Few-Body Nuclei Ron Gilman Rutgers / Jefferson Lab What have we learned? What might we learn? Jefferson Lab User Group The Next.
 4 He(e,e'p)X, April 13 and April 14, 2011, 16 hours Measured P miss at to 1.0 GeV/c, x b = 1.24, Q 2 = 2 (GeV/c) 2 Extension of SRC 2 body data.
Hadrons in the Nuclear Medium. I. QCD dynamics of Hadron-Hadron Interaction I. QCD dynamics of Hadron-Hadron Interaction IV. Protons in the Superdense.
1 Nuclear Physics and Electron Scattering. 2 Four forces in nature –Gravity –Electromagnetic –Weak –Strong  Responsible for binding protons and neutrons.
Nuclear Forces at Short Distances and the Dynamics of Neutron Stars Nuclear Forces at Short Distances and the Dynamics of Neutron Stars.
HALL A COLLABORATION MEETING 16 DECEMBER 2009 STATUS OF THE E EXPERIMENT Impulse Approximation limitations to the (e,e’p) reaction on 208 Pb, 209.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Precision Measurement of R L and R T of Quasi-Elastic Electron Scattering In the Momentum Transfer Range 0.55GeV/c≤|q|≤1.0GeV/c* Yan Xinhu Department of.
Detailed Study of the 4 He Nuclei through Response Function Separations at High Momentum Transfers Spokespersons Fatiha Benmokhtar Carnegie Mellon, Pittsburgh,
“E at Hall A Collaboration” Tai Muangma E :Status Report Nucleon-Nucleon Short-Range Correlation (NN-SRC) on He 4 target Hall A Collaboration.
EINN 2005, Milos, GreeceShalev Gilad - MIT Nuclear Structure and Dynamics in the 3 He(e,e’p)d and 3 He(e,e’p)pn Reactions Two high resolution spectrometers.
E. Penel-NottarisLaboratoire de Physique Subatomique et de Cosmologie de Grenoble 1 July, 7 th, 2004 Quasi-elastic 3 He(e,e’p) experiment (E89-044) at.
EMC effect in few-body nuclei at large x Patricia Solvignon Argonne National Laboratory Elba X Workshop Electron-Nucleus Scattering X June 23-27, 2008.
Nucleon Form Factors and the BLAST Experiment at MIT-Bates
Studying Short range Correlation in Nuclei at the Repulsive Core Limit via the triple Coincidence (e, e’ p N) Reaction PAC 31 / TJNAF Jan Proposal.
The Search for Colour Transparency Dipangkar Dutta Duke University Probing Nucleons and Nuclei via the (e,e’p) Reaction Grenoble, Oct 14-17, 2003.
Hall-C Coincidence Commissioning Experiments E & E Krishna Adhikari Mississippi State University 1 Joint Hall-A & Hall-C Summer meeting.
Report on the triple coincidence analysis Eli Piasetzky for Igor Korover Collaboration meeting Jlab 17June 2013 triple /double ratios: Triple coincidence.
Model independent extraction of neutron structure functions from deuterium data. Svyatoslav Tkachenko University of South Carolina.
Neutrino cross sections in few hundred MeV energy region Jan T. Sobczyk Institute of Theoretical Physics, University of Wrocław (in collaboration with.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
Issues in the Quasi-free Delta Production Region Ryoichi Seki (CSUN/Caltech) in collaboration with Hiroki Nakamura (Waseda) RCCN International Workshop;
S&T Review, June 25-27, 2003, 0 Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy Thomas Jefferson National.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University.
L. Weinstein, Gordon The Nucleons Went Two By Two: Short Range Correlations in Nuclei Larry Weinstein Old Dominion University Theory Overview What.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
L/T separation in the 3 He(e,e’p) reaction at parallel kinematics Freija Descamps Supervisors: Ron Gilman Eric Voutier Co-supervisor: Jean Mougey.
Comparison of quasi-elastic cross sections using spectral functions with (e,e') data from 0.5 GeV to 1.5 GeV Hiroki Nakamura (Waseda U). Makoto Sakuda.
New Measurement of the EMC effect for Light Nuclei and Global Study of the A-Dependence Patricia Solvignon Argonne National Laboratory ECT 2008 Workshop.
Spectrometer optics studies and target development for the 208Pb(e,e’p) experiment in Hall A at Jefferson Lab, GUIDO M. URCIUOLI, INFN, Roma, Italy, JUAN.
Intermediate pT results in STAR Camelia Mironov Kent State University 2004 RHIC & AGS Annual Users' Meeting Workshop on Strangeness and Exotica at RHIC.
Exclusive study of Short range correlations Eli PiasetzkyTel Aviv University, ISRAEL Hall C Summer Workshop.
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
FSU, Tallahassee FL USA May 2016 Eli Piasetzky Tel Aviv University, ISRAEL 12 C Measurement of polarization transferred to a proton bound in nuclei MAMI.
Bryan Moffit Hall A Collaboration Meeting Studying Short Range Correlations in Nuclei at the Repulsive Core Limit via the Triple Coincidence (e,e’pN) Reaction.
Short Range NN Correlations (from Inclusive Cross Sections)
Carlotta Giusti University and INFN Pavia
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Nadia Fomin University of Virginia
LEDA / Lepton Scattering on Hadrons
presented by Werner Boeglin Florida International University Miami
K+ - Scattering from Nuclear Targets
for the A1 collaboration
Life Cycle of a Nuclear Physics Experiment
Deuteron Electro-Disintegration at Very High Missing Momenta PR Hall C Collaboration Experiment Probe two nucleon dynamics at short space-time distances.
Presentation transcript:

EEP03: International Workshop on Probing Nucleons and Nuclei via the (e,e'p) Reaction October 14-17, 2003 Grenoble, France Overview of the (e,e'p) Reaction Paul Ulmer Old Dominion University

Outline  Nuclei  Spectroscopic factors  NN correlations  Reaction mechanism  Deuteron and the NN interaction  Nucleons  Elastic form factors  Medium modifications  Color transparency  Pion electroproduction  Virtual Compton Scattering

Kinematics e e'e' xx pA–1pA–1  pq p (,q)(,q) In ERL e : Q 2  – q  q  = q 2 –  2 = 4ee' sin 2  /2 Missing momentum: p m = q – p = p A–1 = – p 0 Missing mass:  m =  –T p – T A–1 scattering plane “out-of-plane” angle reaction plane PWIA

Response Functions (OPEA)

nuclear spectral function In nonrelativistic PWIA: For bound state of recoil system: proton momentum distribution The Spectral Function e-p cross section

e e'e' q p p0p0 FSI A–1A–1 A p0'p0' Final State Interactions (FSI)

Treat outgoing proton distorted waves in presence of potential produced by residual nucleus (optical potential). Distorted Wave Impulse Approximation (DWIA) “Distorted” spectral function

Nuclei

U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964). 1964: Frascati Synchrotron 12 C(e,e'p)

J. Mougey et al., Nucl. Phys. A262, 461 (1976). 1976: Saclay Cross Section ( cm 2 /MeV 2 /sr 2 ) Missing Energy (MeV) 12 C(e,e'p) 0  p m  36 MeV/c

G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). 1988: NIKHEF 12 C(e,e'p)  p m  = 29 MeV/c 1s 1/2 knockout E x [MeV] S(E x,p m ) [(MeV/c) -3 MeV -1 ]

G. van der Steenhoven, et al., Nucl. Phys. A480, 547 (1988). NIKHEF 12 C(e,e'p) 11 B DWIA calculations give correct shapes, but: Missing strength observed.  (p m ) [(MeV/c)  3 ] p m [MeV/c] 1p knockout from 12 C

“Spectroscopic” Factors …

V. Pandharipande, I. Sick and Peter K.A. deWitt Huberts, Rev. Mod. Phys. 69, 981 (1997). Normalization factors z target mass A

B.A. Brown et al., Phys. Rev. C 65, (2002). Transfer Reactions and Normalization Factors

L. Lapikás, et al., Phys. Rev. C 61, (2000). 12 C(e,e'p) S 1p + S 1s Q 2 [(GeV/c) 2 ] Low Q 2 : optical potential High Q 2 : Glauber Discontinuity seen with strength nearly saturated at high Q 2.

16 O(e,e'p) Marco Radici, W.H. Dickhoff and E. Roth Stoddard, Phys. Rev. C 66, (2002). Data: M. Leuschner et al. Data: J. Gao et al. The same spectroscopic factors used throughout: (p 1/2 ) and (p 3/2 ).

J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). 12 C(e,e'p) For  <  QE, essentially no quenching is observed. Bates Linear Accelerator

Where does the missing strength go? Short-range correlations? …

C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). n(k) total  m  MeV 2-body  m  300 MeV  m  50 MeV 3 He SRC dominate high k (=p m ) and are related to large values of  m.

C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p) Calculations by Laget: dashed=PWIA dot-dashed=DWIA solid=DWIA+MEC Saclay Arrows indicate expected position for correlated pair.

C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p)d 3 He(e,e'p)np 3BBU similar to d  np

J.J. van Leeuwe et al., Nucl. Phys. A631, 593c (1998). Laget: full Laget: no MEC/IC 4 He(e,e'p) Peak roughly tracks kinematics of knockout of correlated 2N pair AmPS NIKHEF-K

Data do not seem to follow naïve expectation for NN correlation peak. JLab Hall C Data: D. Rohe, E (Preliminary) GF: H. Müther et al., Phys. Rev. C 52, 2955 (1995). CBF: O. Benhar et al., Nucl. Phys. A579, 493 (1994). Data CBF GF PRELIMINARY

Reaction Mechanism

L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). H. Baghaei et al., Phys. Rev. C 39, 177 (1989). 12 C(e,e'p) Quasielastic“Delta” Q 2 =0.30 Q 2 =0.48 Q 2 =0.58 Between dip and  Peak of  Bates Linear Accelerator

D. Dutta et al., Phys. Rev. C 61, (2000).P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259 (1987). 12 C(e,e'p) L/T Separations Q 2 =0.15 GeV 2 Q 2 =0.64 GeV 2 Bates Linear AcceleratorJLab Hall C

D. Dutta et al., Phys. Rev. C 61, (2000). Excess transverse strength at high  m. Persists, though declines, at higher Q 2. JLab Hall C

J.J. Kelly, Adv. Nucl. Phys. 23, 75 (1996). E m – E 2-body threshold [MeV] T/L ratio (  ) [-] Transverse Enhancement 6 Li 10 B 12 C

Relativity …

G. van der Steenhoven, Few-Body Syst. 17, 79 (1994). Wilbois/Arenhövel de Forest Hummel/Tjon Arenhövel/Fabian Mosconi/Ricci NR A LT 2 H(e,e'p)n A LT Arenhövel/Fabian NR de Forest “CC1” nucleon cross section gives same qualitative features as more complete calculations  here, relativistic effects mainly in nucleonic current.

J.M. Udías et al., Phys. Rev. C 64, (2001). Previous non-relativistic analysis Saclay data: L. Chinitz et al.NIKHEF data: C.M. Spaltro et al. Discrepancy reported earlier was based on non-relativistic calculations. Relativistic treatment is required even at these modest momenta. 16 O(e,e'p) RCC1 RCC2 PCC1 PCC2

16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic JLab Hall A Effect of spinor distortion significant. 1p 1/2 1p 3/2 Calculations: Udías, et al. J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000) and K.G. Fissum et al., in preparation, to be submitted to Phys. Rev. C.

16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Two-body calculations (Janssen et al.) reproduce flat distribution, but underpredict by roughly a factor of two. JLab Hall A J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000) and K.G. Fissum et al., in preparation, to be submitted to Phys. Rev. C.

The deuteron and the NN interaction

M. Bernheim et al., Nucl. Phys. A365, 349 (1981). Saclay

FSI+MEC+IC FSI 2 H(e,e'p) Q 2 =0.23 GeV 2 near  PWBA+FSI PWBA+FSI+MEC+IC PWBA+FSI+MEC Bonn H. Breuker et al., Nucl. Phys. A455, 641 (1986). Calculations: Leidemann and Arenhövel K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). Calculations: H. Arenhövel Mainz 2 H(e,e'p) varying Q 2, x

High momentum structure of 2 H? 2 H(e,e'p)n Q 2 = 0.67 GeV 2 x = 0.96 P.E. Ulmer et al., Phys. Rev. Lett. 89, (2002).  Evidence for large FSI JLab Hall A

D. Jordan et al., Phys. Rev. Lett. 76, 1579 (1996).

I. Passchier et al., Phys. Rev. Lett. 88, (2002). Sensitive to D-state AmPS NIKHEF-K

The Nucleon

Proton Polarization and Form Factors * R. Arnold, C. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981). in nucleus model assumptions *

O. Gayou, et al., Phys. Rev. Lett. 88, (2002). Proton Elastic Form Factors via 1 H(e,e'p)

Searching for Medium Effects on the Nucleon … In parallel kinematics: PWIA This relies on (unrealistic) model assumption.

Medium Modifications or FSI? Data ( 12 C): G. Van der Steenhoven et al., Phys. Rev. Lett. 57, 182 (1986). Calculations ( 16 O): T.D. Cohen, J.W. Van Orden, A. Picklesimer, Phys. Rev. Lett. 59, 1267 (1987). Dirac PWIA Dirac DWIA Schrödinger LDA Q 2 [GeV 2 ] R G (1p 3/2 )

Another, less model-dependent, method … Polarization Transfer

Mainz: S. Dieterich et al., Phys. Lett. B500, 47 (2001). E93-049: S. Strauch et al., Phys. Rev. Lett. 91, (2003). E03-104: Projected Data, Strauch, Ent, Ransome, Ulmer, cospokespersons 4 He(e,e'p)

K. Garrow, et al., Phys. Rev. C 66, (2002). Color Transparency?

Sabit S. Kamalov et al., Phys Rev. C 64, (2001). p(e,e'p)  0 and  * N   JLab Hall C data (Q 2 =2.8, 4.0 GeV 2 ): V.V. Frolov et al., Phys. Rev. Lett. 82, 45 (1999); their analysis shown by stars. MAID Dynamical Model pQCD  100% pQCD  constant

Summary Single-particle picture describes some gross features of experiments at least in quasielastic kinematics. Quenching of strength gives indirect evidence of NN correlations. Also, some direct evidence, but … Reaction dynamics still not well understood. Relativistic treatment essential at moderate/high Q 2, but also essential at low Q 2 for certain observables. NN interaction studies via d(e,e'p)n now being fully exploited: reaction dynamics/short-range structure of NN force. A wealth of new information now coming out on the nucleon: elastic and inelastic structure, medium modifications, color transparency, polarizabilities, …