1 Тяжелый кварконий, эксперимент Р.В. Мизюк (ИТЭФ) Сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий“ 23 ноября 2011г., ИТЭФ Коллаборация BELLE
2 Observation of h b (1P) and h b (2P) Contents (5S) Z b (10610) + - Z b (10650) + - (1S) + - (2S) + - (3S) + - h b (1P) + - h b (2P) + - Observation of Z b arXiv: arXiv: final state w/ h b (nP) and (nS) angular analysis submitted to PRL accepted by PRL at BB* and B*B* thresholds molecules Charmonium-like molecules, charged states etc. Observation of h b (1P) b (1S) arXiv: arXiv:
3 QWG, arXiv: Charmonium table below DD threshold is completed J PC M, GeV Renaissance in quarkonium n (2S+1) L J spectroscopic notation P = (–1) L+1 C = (–1) L+S J PC conserved QN _
4 Many new states do not fit qq table… QWG, arXiv: _
5 Close to D* 0 D 0 threshold: m = – 0.09 0.34 MeV M = 0.19 MeV, Γ < 1.2 MeV (90% C.L.) QWG, arXiv: Many new states do not fit qq table… _ J PC = 1 ++ (2 –+ not excluded) Decay modes BF relative to J/ 0 J/ 0 1 J/ 0.8 0.3 J/ 0.21 0.06 D* 0 D 0 ~10 Interpretation: D* 0 D 0 molecule _ D* 0 D 0 lineshape crucial for structure : _ bound / virtual state admixture of c1 ′ BF(J/ 0 ) > 2.5% (90% C.L.)
6 QWG, arXiv: Many new states do not fit qq table… _ Z(4430) + widths 100–200 MeV difficult to interpret multiquark candidates BZKBZK rescattering? Pakhlov PLB702,139(2011)
7 QWG, arXiv: Many new states do not fit qq table… _ Y(4260) BaBar (Y 4260 J/ ) > % CL X.H.Mo et al, PL B640, 182 (2006) cf. ( J/ ) = 0.04 MeV 4260 (e+e- hadrons) (e+e- + -) BES data No sign of Y(4260) D ( * ) D ( * ) _ e + e - ISR + J/
8 QWG, arXiv: PRL100,112001(2008) (MeV) 10 2 PRD82,091106R(2010) Anomalous production of (nS) + - 1. Rescattering (5S) BB (nS) ? Simonov JETP Lett 87,147(2008) 2. Similar effect in charmonium? shapes of R b and ( ) different (2 ) to distinguish energy scan (5S) line shape of Y b Y(4260) with anomalous (J/ + - ) assume Y b close to (5S) Many new states do not fit qq table… _
9 h b (1P) & h b (2P) Observation of
10 Trigger Y(4260) Y b search for h b (nP) + (5S) CLEO observed e + e - → h c + E CM =4170MeV PRL107, (2011) (h c + – ) (J/ + – ) 4260 Hint of rise in (h c + - Y(4260) ? Y(4260)
11 MM( + - ) Introduction to h b (nP) (bb) : S=0 L=1 J PC =1 + M HF test of hyperfine interaction For h c M HF = 0.00 0.15 MeV, expect smaller deviation for h b (nP) _ Expected mass (M b0 + 3 M b1 + 5 M b2 ) / 9 (3S) → 0 h b (1P) BaBar arXiv: Previous search
12 MM( + - ) Introduction to h b (nP) (bb) : S=0 L=1 J PC =1 + M HF test of hyperfine interaction For h c M HF = 0.00 0.15 MeV, expect smaller deviation for h b (nP) _ Expected mass (M b0 + 3 M b1 + 5 M b2 ) / 9 (3S) → 0 h b (1P) BaBar arXiv: Previous search
13 (5S) h b + - reconstruction h b → ggg, b (→ gg) no good exclusive final states reconstructed “Missing mass” M(h b ) = (E c.m. – E + - ) 2 – p + - ** 2 M miss ( + - ) (1S) (2S) (3S) h b (2P)h b (1P)
14 Results fb -1 h b (1P) 5.5 h b (2P) 11.2 Significance w/ systematics
15 Hyperfine splitting h b (1P) (1.6 1.5) MeV/c 2 h b (2P) ( ) MeV/c Deviations from CoG of bJ masses consistent with zero, as expected Ratio of production rates Mechanism of (5S) h b (nP) + - decay is exotic for h b (1P) for h b (2P) no spin-flip = spin-flip Process with spin-flip of heavy quark is not suppressed
16 Resonant structure of (5S) h b (nP) + -
17 Resonant structure of (5S) h b (1P) + - M(h b – ), GeV/c 2 phase-space MC M(h b + ), GeV/c 2
18 Resonant structure of (5S) h b (1P) + - Results MeV 2 = non-res.~0 Fit function ~BB* threshold _ ~B*B* threshold __ 1 = MeV MeV/c 2 M 2 = M 1 =MeV/c 2 a = = degree Significance (16 w/ syst)18 fb -1 M(h b – ), GeV/c 2 phase-space MC M(h b + ), GeV/c 2 fit M miss ( + – ) in M(h b ) bins M(h b ), GeV/c 2 h b (1P) yield / 10MeV Z b (10610), Z b (10650)
19 Resonant structure of (5S) h b (2P) + - Significances (5.6 w/ syst)6.7 M(h b – ), GeV/c 2 phase-space MC M(h b + ), GeV/c 2 fit M miss ( + – ) in M(h b ) bins fb -1 M(h b ), GeV/c 2 h b (1P) yield / 10MeV non-res.~0 h b (1P) + - h b (2P) + - non-res. set to zero degree MeV/c 2 MeV c o n s i s t e n t MeV 2 = 1 = MeV MeV/c 2 M 2 = M 1 =MeV/c 2 a = = degree MeV
20 Resonant structure of (5S) (nS) + - (n=1,2,3)
21 (5S) (nS) + - +- +- (n = 1,2,3) (1S) (2S) (3S) reflections M miss ( + - ), GeV/c 2
22 (1S) (2S) (3S) (5S) (nS) + - (nS) + - (n = 1,2,3) M miss ( + - ), GeV/c 2 purity 92 – 94%
23 (5S) (nS) + - Dalitz plots (1S) (2S) (3S)
24 (5S) (nS) + - Dalitz plots (1S) (2S) (3S) Signals of Z b (10610) and Z b (10650)
25 heavy quark spin-flip amplitude is suppressed Fitting the Dalitz plots Signal amplitude parameterization: S(s1,s2) = A(Z b1 ) + A(Z b2 ) + A(f 0 (980)) + A(f 2 (1275)) + A NR A NR = C 1 + C 2 ∙m 2 (ππ) Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, [2] M.B. Voloshin, Phys. Rev. D74:054022, A(Z b1 ) + A(Z b2 ) + A(f 2 (1275)) A(f 0 (980)) – Breit-Wigner – Flatte (5S) Z b , Z b (nS) – no spin orientation change S-wave Spins of (5S) and (nS) can be ignored Angular analysis favors J P =1 + Non-resonant
26 Results: (1S)π + π - M( (1 S)π + ), GeV M( (1S)π - ), GeV signals reflections
27 Results: (2S)π + π - reflections signals M( (2S)π + ), GeV M( (2S)π - ), GeV
28 Results: (3S)π + π - M( (3S)π + ), GeV M( (3S)π - ), GeV
29 M 1 = 2.0 MeV 1 = 18.4 2.4 MeV M 2 = 1.5 MeV 2 = 11.5 2.2 MeV Z b (10610) yield ~ Z b (10650) yield in every channel Relative phases: 0 o for and 180 o for h b Summary of Z b parameters Average over 5 channels
30 M 1 = 2.0 MeV 1 = 18.4 2.4 MeV M 2 = 1.5 MeV 2 = 11.5 2.2 MeV Z b (10610) yield ~ Z b (10650) yield in every channel Relative phases: 0 o for and 180 o for h b Summary of Z b parameters Average over 5 channels M(h b ), GeV/c 2 h b (1P) yield / 10MeV = 180 o = 0 o
31 Angular analyses
32 Angular analyses Example : (5S) Z b + (10610) - [ (2S) + ] - (0 is forbidden by parity conservation) Color coding: J P = Best discrimination: cos 2 for 1 - (3.6 ) and 2 - (2.7 ); non-resonant combinatorial cos 1 cos 2 rad cos 1 for 2 + (4.3 ) i ( i,e + ), [plane( 1,e + ), plane( 1, 2 )] Definition of angles
33 Summary of angular analyses All angular distributions are consistent with J P =1 + for Z b (10610) & Z b (10650). All other J P with J 2 are disfavored at typically 3 level. Probabilities at which different J P hypotheses are disfavored compared to 1 + procedure to deal with non-resonant contribution is approximate, no mutual cross-feed of Z b ’s Preliminary:
34 Heavy quark structure in Z b Wave func. at large distance – B(*)B* arXiv: Why h b is unsuppressed relative to Relative phase ~0 for and ~180 0 for h b Production rates of Z b (10610) and Z b (10650) are similar Widths –”– Existence of other similar states Explains Predicts
35
36 Observation of h b (1P) b (1S)
37 Introduction to b Godfrey & Rosner, PRD (2002) h b (1P) → ggg (57%), b (1S) (41%), gg (2%) h b (2P) → ggg (63%), b (1S) (13%), b (2S) (19%), gg (2%) Expected decays of h b Large h b (mP) samples give opportunity to study b (nS) states. Experimental status of b M[ b (1S)] = 2.8 MeV (BaBar + CLEO) M[ (1S)] – M[ b (1S)] = 69.3 2.8 MeV Width of b (1S): no information pNRQCD: 41 14 MeV Lattice: 60 8 MeV Kniehl et al., PRL92,242001(2004)Meinel, PRD82,114502(2010)
38 Method reconstruct b (mS) (5S) Z b - + h b (nP) + Decay chain Use missing mass to identify signals M( b ) M(h b ) true + - fake fake + - true true + - true MC simulation M miss ( + - ) M miss ( + - ) – M miss ( + - ) + M[h b ]
39 Method reconstruct b (mS) (5S) Z b - + h b (nP) + Decay chain Use missing mass to identify signals M( b ) M(h b ) MC simulation M miss ( + - ) M miss ( + - ) – M miss ( + - ) + M[h b ] Approach: fit M miss ( + - ) spectra in M miss ( + - ) bins h b (1P) yield vs. M miss ( + - ) search for b (1S) signal
40 Results b (1S) 13 potential models : = 5 – 20 MeV Godfrey & Rosner : BF = 41% BaBar (3S) b (1S) BaBar (2S) CLEO (3S) BELLE preliminary pNRQCDLattice arXiv: M HF [ b (1S)] = 59.3 MeV/c 2 –1.4
41 Observation of two charged bottomonium-like resonances in 5 final states M = 2.0 MeV = 18.4 2.4 MeV M = 1.5 MeV = 11.5 2.2 MeV First observation of h b (1P) and h b (2P) Hyperfine splitting consistent with zero, as expected Anomalous production rates arXiv: accepted by PRL arXiv: , arXiv: , submitted to PRL Summary (1S)π +, (2S) π +, (3S)π +, h b (1P) +, h b (2P) + Angular analyses favour J P = 1 +, decay pattern I G = 1 + Masses are close to BB* and B*B* thresholds – molecule? Observation of h b (1P) b (1S) The most precise single meas., significantly different from WA, decreases tension w/ theory Will Z b ’s become a key to understanding of all other quarkonium-like states? arXiv: Z b (10610)
42 Back up
43 BsBs Integrated Luminosity at B-factories > 1 ab -1 On resonance: (5S): 121 fb -1 (4S): 711 fb -1 (3S): 3 fb -1 (2S): 24 fb -1 (1S): 6 fb -1 Off reson./scan : ~100 fb fb -1 On resonance: (4S): 433 fb -1 (3S): 30 fb -1 (2S): 14 fb -1 Off reson./scan : ~54 fb-1 (fb -1 ) asymmetric e + e - collisions
44 ( 5S ) Belle took data at E=10867 1 MэВ 2M(B s ) BaBar PRL 102, (2009) ( 6S ) ( 4S ) e + e - hadronic cross-section main motivation for taking data at (5S) ( 1S ) ( 2S ) ( 3S ) ( 4S ) 2M(B) e + e - -> (4S) -> BB, where B is B + or B 0 e + e - -> bb ( (5S)) -> B ( * ) B ( * ), B ( * ) B ( * ) , BB , B s ( * ) B s ( * ), (1S) , X … _ _____
45 Residuals (1S) Example of fit Description of fit to MM( + - ) Three fit regions 123 Ks generic (3S) kinematic boundary MM( + -) M( + -) MM( + -) BG: Chebyshev polynomial, 6 th or 7 th order Signal: shape is fixed from + - + - data “Residuals” – subtract polynomial from data points K S contribution: subtract bin-by-bin
46 Why do we think these are h b (nP) and not b1 (nP) ? Masses are significantly different: The strong decay (5S) b1 + - violates isospin conservation M(1P) = 5.5 1.6 (3.5 ) M(2P) = 4.3 1.4 (3.2 ) Search in (4S) data No significant signal of h b (1P): (4S) does not show anomalous properties L = 711fb -1 [ 6 (5S) sample] [e + e - h b (1P) + - (4S) [e + e - h b (1P) + - (5S) <0.28 at 90%C.L.
47 Confidence Levels of angular fits to (5S) Z b + - [h b (1P) + ] - decay with hypothesis 1+