1 Тяжелый кварконий, эксперимент Р.В. Мизюк (ИТЭФ) Сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий“ 23 ноября 2011г., ИТЭФ.

Slides:



Advertisements
Similar presentations
1 Charged Z’s at Ruslan Chistov (ITEP, Moscow) Representing the Belle Collaboration Quarkonium Working Group Workshop (Nara, NWU, December 2-5/2008) ●
Advertisements

Determination of the J PC of the X(3872) (Reviews of BN800) S.L. Olsen & S.K. Choi Apr, 2005 Belle General Meeting.
H b and other  (5S) results at Belle D. Santel Rencontres de Blois June 1, Introduction to h b and  (5S) 2.Search for the h b 3. Observation of.
Recent Bottomonium Results from BaBar Bryan Fulsom SLAC National Accelerator Laboratory 35 th International Conference on High Energy Physics Paris, France.
Charm results overview1 Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
R Measurement at charm resonant region Haiming HU BES Collaboration Charm 2007 Cornell University Ithaca, NY. US.
Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
X(3872) Review T.Aushev LPHE seminar. 8 February 2010T.Aushev, LPHE seminar2 Introduction Era of the new family of particles, named XYZ, started from.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
New Particles at BELLE Beauty 2005 Assisi Spectroscopy and new Particles F. Mandl There is an impressive list of new particles in the charm sector discovered.
Pinning down the J PC values of the X(3872) K. Miyabayashi for S.K. Choi & S.L. Olsen Feb, 2005 Belle Analysis & Software Meeting.
New Particles X(3872) Y(4260) X(3940) University of Hawai’i Future of Heavy Flavors ИТЗФ 7/23-24/06 Z(3930) Y(3940) Ѕтефан Олавич ????
Exotics at & Stephen L. Olsen Seoul National University 447 th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany & CDF.
Measurement of R at CLEO - Jim Libby1 Measurement of R at CLEO Jim Libby University of Oxford.
Charmonium Decays in CLEO Tomasz Skwarnicki Syracuse University I will concentrate on the recent results. Separate talk covering Y(4260).
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
Discovery of D sJ (2463) + (part II) JC Wang CLEO Meeting 06/20/03 Authors Dave Cinabro Selina Li Sheldon Stone Jon Urheim Jianchun Wang Committees Roy.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
July 7, 2008SLAC Annual Program ReviewPage 1 New Charmonium-like States Arafat Gabareen Mokhtar SLAC Group-EC (B A B AR ) DOE Review Meeting July 8 th,
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Charmonium Production at BaBar Jamie Boyd University of Bristol Photon 2003, Frascati 7 th -11 th April 2003 On behalf of the Collaboration.
1 Bottomonium and bottomonium–like states Alex Bondar On behalf of Belle Collaboration Cracow Epiphany Conference “Present and Future B-physics” (9 - 11,
“Exotic” bottomonium states Alex Bondar BINP, Novosibirsk Belle Collaboration (Hadrons from Quarks and Gluons, January 16, 2014, Hirschegg, Austria)
Exotic Heavy Quarkonium States Alex Bondar BINP, Novosibirsk Belle Collaboration (INR, May 15, 2015, Moscow, Russia)
Quarkonium and quarkonium-like states Alex Bondar BINP, Novosibirsk Belle Collaboration (KEK, December 13, 2013, Tsukuba, Japan)
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
Kraków, June 9th, 2015 Exotic quarkonium-like states Andrzej Kupsc Positronium – quarkonia XYZ studies at BESIII Zc states: Zc 0± (3900), Zc 0± (4020)
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011 Observation of charged bottomonium-like states -and a few other items-
cc spectroscopy at elle S.L.Olsen Hawaii QWG 2004 Worksop IHEP Beijing _.
New Observations on Light Hadron Spectroscopy at BESIII Yanping HUANG For BESIII Collaboration Institute of High Energy Physics (IHEP) ICHEP2010, Paris,
1 Branching Fraction and Properties of B meson Decays to Charmonium Y. Watanabe Tokyo Institute of Technology For the Belle Collaboration.
Branching Ratios and Angular Distribution of B  D*  Decays István Dankó Rensselaer Polytechnic Institute (CLEO Collaboration) July 17, 2003 EPS Int.
New hadrons BaBar Maurizio Lo Vetere University of Genova & INFN Representing the Collaboration Particles and Nuclei International Conference.
On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0.
1 Y(5S) spectroscopy at Belle Alex Bondar BINP, Novosibirsk (On behalf of Belle Collaboration) International Conference on High Energy Physics, ,
Recent BESII Results of Charmonium Decays Gang LI CCAST&IHEP, Beijing for Ψ(2S) Group Topical Seminar on Frontier of Particle Physics 2005: Heavy Flavor.
Scalar and pseudoscalar mesons at BESII Xiaoyan SHEN (Representing BES Collaboration) Institute of High Energy Physics, CAS, China Charm06, June 5-7, 2006,
New Resonances at Belle Jolanta Brodzicka INP Kraków, for the Belle Collaboration ICFP 2005 October 4 th, 2005 Taiwan Outline  ‘ old’ X(3872) properties.
Φ→Ψ, BINP, Novosibirsk.2011P. Pakhlov Phys. Lett. B702, 139 (2011) Charged charmonium-like states as rescattering effects in B  D sJ D (*) P. Pakhlov.
Observation of the Z c (3900) — a charged charmoniumlike structure — Changzheng Yuan [ 苑长征 ] (for the BESIII Collaboration) March 27, 2013.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
1 Evidence for a Near-Threshold Structure in the J/  from B +  J/  K + Decay at CDF Kai Yi University of Iowa (for CDF Collaboration) Fermilab, March.
F. Martínez-Vidal IFIC – Universitat de València-CSIC (on behalf of the BaBar Collaboration)  from B ±  D (*)0 [K S     ]K (*)±  in BaBar Outline.
1 Hadron Spectroscopy at BABAR BY Usha Mallik (University of Iowa) Representing The BaBar Collaboration The International Light-Cone Workshop July 7, 2005.
1 ITEP Winter School 2012, Feb Roman Mizuk ITEP, Moscow Quarkonium, experiment BELLE Collaboration.
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
DCPV/Rare George W.S. Hou (NTU) Beauty Assisi 1 Direct CP and Rare Decays June 21, 2005 B Physics at Hadronic Machines, Assisi.
B→ X(3872)K and Z(4430)K at Belle Kenkichi Miyabayashi Nara Women’s Univ. For Belle collaboration QWG2007 at DESY 2007/Oct./19th.
Hadron 2011,June 13-17, Munich,Germany Valentina Santoro INFN Ferrara Representing the BaBar Collaboration Valentina Santoro Charmonium & Charmonium-like.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
Charm Form Factors from from B -Factories A. Oyanguren BaBar Collaboration (IFIC –U. Valencia)
05/11/09 Pheno 2009 Symposium Exotic charmonium mesons at BaBar Valentina Santoro Ferrara University and INFN Representing the BaBar Collaboration Outline.
Paper Committee: Moneti(chair?), Danko, Ehrlich, Galik 1 OCT 21, 2006.
Hadron Physics at Belle
Recent results on light hadron spectroscopy at BES
Quarkonia & XYZ at e+e– colliders
Zb states (All Results from Belle)
Study of New Hadron Spectroscopy at BESIII
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
Hidden charm spectroscopy from B-factories
e+e−→ J/ D(*)D(*) & ψ(4160) → DD
CONVENTIONAL CHARMONIA
Hot Topic from Belle : Recent results on quarkonia
New States Containing Charm at BABAR
Presentation transcript:

1 Тяжелый кварконий, эксперимент Р.В. Мизюк (ИТЭФ) Сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий“ 23 ноября 2011г., ИТЭФ Коллаборация BELLE

2 Observation of h b (1P) and h b (2P) Contents  (5S)   Z b (10610) +  - Z b (10650) +  -  (1S)  +  -  (2S)  +  -  (3S)  +  - h b (1P)  +  - h b (2P)  +  - Observation of Z b  arXiv: arXiv: final state w/ h b (nP) and  (nS) angular analysis submitted to PRL accepted by PRL at BB* and B*B* thresholds  molecules Charmonium-like molecules, charged states etc. Observation of h b (1P)  b (1S)  arXiv: arXiv:

3 QWG, arXiv: Charmonium table below DD threshold is completed J PC M, GeV Renaissance in quarkonium n (2S+1) L J spectroscopic notation P = (–1) L+1 C = (–1) L+S J PC conserved QN _

4 Many new states do not fit qq table… QWG, arXiv: _

5 Close to D* 0 D 0 threshold:  m = – 0.09  0.34 MeV  M  =  0.19 MeV, Γ < 1.2 MeV (90% C.L.) QWG, arXiv: Many new states do not fit qq table… _ J PC = 1 ++ (2 –+ not excluded) Decay modes BF relative to J/   0 J/   0 1 J/   0.8  0.3 J/   0.21  0.06 D* 0 D 0 ~10 Interpretation: D* 0 D 0 molecule _ D* 0 D 0 lineshape crucial for structure : _ bound / virtual state admixture of  c1 ′ BF(J/  0 ) > 2.5% (90% C.L.)

6 QWG, arXiv: Many new states do not fit qq table… _ Z(4430) + widths 100–200 MeV  difficult to interpret multiquark candidates BZKBZK rescattering? Pakhlov PLB702,139(2011)

7 QWG, arXiv: Many new states do not fit qq table… _ Y(4260) BaBar  (Y 4260      J/  ) > % CL X.H.Mo et al, PL B640, 182 (2006) cf.  (        J/  ) = 0.04 MeV 4260  (e+e-  hadrons)  (e+e-   +  -) BES data No sign of Y(4260)  D ( * ) D ( * ) _ e + e -  ISR  +   J/ 

8 QWG, arXiv: PRL100,112001(2008)  (MeV) 10 2 PRD82,091106R(2010) Anomalous production of  (nS)  +  - 1. Rescattering  (5S)  BB  (nS)  ? Simonov JETP Lett 87,147(2008) 2. Similar effect in charmonium?  shapes of R b and  (  ) different (2  ) to distinguish  energy scan  (5S) line shape of Y b Y(4260) with anomalous  (J/   +  - )  assume  Y b close to  (5S) Many new states do not fit qq table… _

9 h b (1P) & h b (2P) Observation of

10 Trigger Y(4260)  Y b  search for h b (nP)  +   (5S) CLEO observed e + e - → h c  +  E CM =4170MeV PRL107, (2011)  (h c  +  – )   (J/   +  – ) 4260 Hint of rise in  (h c  +  - Y(4260) ? Y(4260)

11 MM(  +  - ) Introduction to h b (nP) (bb) : S=0 L=1 J PC =1 +   M HF  test of hyperfine interaction For h c  M HF = 0.00  0.15 MeV, expect smaller deviation for h b (nP) _ Expected mass  (M  b0 + 3 M  b1 + 5 M  b2 ) / 9  (3S) →  0 h b (1P) BaBar arXiv:  Previous search

12 MM(  +  - ) Introduction to h b (nP) (bb) : S=0 L=1 J PC =1 +   M HF  test of hyperfine interaction For h c  M HF = 0.00  0.15 MeV, expect smaller deviation for h b (nP) _ Expected mass  (M  b0 + 3 M  b1 + 5 M  b2 ) / 9  (3S) →  0 h b (1P) BaBar arXiv:  Previous search 

13  (5S)  h b  +  - reconstruction h b → ggg,  b (→ gg)  no good exclusive final states reconstructed “Missing mass” M(h b ) =  (E c.m. – E  +  - ) 2 – p  +  - ** 2  M miss (  +  - )  (1S)  (2S)  (3S) h b (2P)h b (1P)

14 Results fb -1 h b (1P) 5.5  h b (2P) 11.2  Significance w/ systematics

15 Hyperfine splitting h b (1P) (1.6  1.5) MeV/c 2 h b (2P) ( ) MeV/c Deviations from CoG of  bJ masses consistent with zero, as expected Ratio of production rates  Mechanism of  (5S)  h b (nP)  +  - decay is exotic for h b (1P) for h b (2P) no spin-flip = spin-flip Process with spin-flip of heavy quark is not suppressed

16 Resonant structure of  (5S)  h b (nP)  +  -

17 Resonant structure of  (5S)  h b (1P)  +  - M(h b  – ), GeV/c 2 phase-space MC M(h b  + ), GeV/c 2

18 Resonant structure of  (5S)  h b (1P)  +  - Results MeV  2 = non-res.~0 Fit function ~BB* threshold _ ~B*B* threshold __  1 = MeV MeV/c 2 M 2 = M 1 =MeV/c 2 a =  = degree Significance (16  w/ syst)18  fb -1 M(h b  – ), GeV/c 2 phase-space MC M(h b  + ), GeV/c 2 fit M miss (  +  – ) in M(h b  ) bins  M(h b  ), GeV/c 2 h b (1P) yield / 10MeV  Z b (10610), Z b (10650)

19 Resonant structure of  (5S)  h b (2P)  +  - Significances (5.6  w/ syst)6.7  M(h b  – ), GeV/c 2 phase-space MC M(h b  + ), GeV/c 2 fit M miss (  +  – ) in M(h b  ) bins  fb -1 M(h b  ), GeV/c 2 h b (1P) yield / 10MeV non-res.~0 h b (1P)  +  - h b (2P)  +  - non-res. set to zero degree MeV/c 2 MeV c o n s i s t e n t MeV  2 =  1 = MeV MeV/c 2 M 2 = M 1 =MeV/c 2 a =  = degree MeV

20 Resonant structure of  (5S)  (nS)  +  - (n=1,2,3)

21  (5S)   (nS)  +  -  +- +- (n = 1,2,3)  (1S)  (2S)  (3S) reflections M miss (  +  - ), GeV/c 2

22  (1S)  (2S)  (3S)  (5S)   (nS)  +  -  (nS)   +  - (n = 1,2,3) M miss (  +  - ), GeV/c 2 purity 92 – 94%

23  (5S)  (nS)  +  - Dalitz plots  (1S)  (2S)  (3S)

24  (5S)  (nS)  +  - Dalitz plots  (1S)  (2S)  (3S)  Signals of Z b (10610) and Z b (10650)

25 heavy quark spin-flip amplitude is suppressed Fitting the Dalitz plots Signal amplitude parameterization: S(s1,s2) = A(Z b1 ) + A(Z b2 ) + A(f 0 (980)) + A(f 2 (1275)) + A NR A NR = C 1 + C 2 ∙m 2 (ππ) Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, [2] M.B. Voloshin, Phys. Rev. D74:054022, A(Z b1 ) + A(Z b2 ) + A(f 2 (1275)) A(f 0 (980)) – Breit-Wigner – Flatte  (5S)  Z b , Z b   (nS)  – no spin orientation change S-wave Spins of  (5S) and  (nS) can be ignored Angular analysis favors J P =1 + Non-resonant

26 Results:  (1S)π + π - M(  (1 S)π + ), GeV M(  (1S)π - ), GeV signals reflections

27 Results:  (2S)π + π - reflections signals M(  (2S)π + ), GeV M(  (2S)π - ), GeV

28 Results:  (3S)π + π - M(  (3S)π + ), GeV M(  (3S)π - ), GeV

29  M 1  =  2.0 MeV   1  = 18.4  2.4 MeV  M 2  =  1.5 MeV   2  = 11.5  2.2 MeV Z b (10610) yield ~ Z b (10650) yield in every channel Relative phases: 0 o for  and 180 o for h b  Summary of Z b parameters Average over 5 channels

30  M 1  =  2.0 MeV   1  = 18.4  2.4 MeV  M 2  =  1.5 MeV   2  = 11.5  2.2 MeV Z b (10610) yield ~ Z b (10650) yield in every channel Relative phases: 0 o for  and 180 o for h b  Summary of Z b parameters Average over 5 channels M(h b  ), GeV/c 2 h b (1P) yield / 10MeV  = 180 o  = 0 o

31 Angular analyses

32 Angular analyses Example :  (5S)  Z b + (10610)  -  [  (2S)  + ]  - (0  is forbidden by parity conservation) Color coding: J P = Best discrimination: cos  2 for 1 - (3.6  ) and 2 - (2.7  ); non-resonant combinatorial cos  1 cos  2   rad cos  1 for 2 + (4.3  )  i  (  i,e + ),  [plane(  1,e + ), plane(  1,  2 )] Definition of angles

33 Summary of angular analyses All angular distributions are consistent with J P =1 + for Z b (10610) & Z b (10650). All other J P with J  2 are disfavored at typically 3  level. Probabilities at which different J P hypotheses are disfavored compared to 1 + procedure to deal with non-resonant contribution is approximate, no mutual cross-feed of Z b ’s Preliminary:

34 Heavy quark structure in Z b Wave func. at large distance – B(*)B* arXiv: Why h b  is unsuppressed relative to  Relative phase ~0 for  and ~180 0 for h b Production rates of Z b (10610) and Z b (10650) are similar Widths –”– Existence of other similar states Explains Predicts

35

36 Observation of h b (1P)  b (1S) 

37 Introduction to  b Godfrey & Rosner, PRD (2002) h b (1P) → ggg (57%),  b (1S)  (41%),  gg (2%) h b (2P) → ggg (63%),  b (1S)  (13%),  b (2S)  (19%),  gg (2%) Expected decays of h b Large h b (mP) samples give opportunity to study  b (nS) states. Experimental status of  b M[  b (1S)] =  2.8 MeV (BaBar + CLEO) M[  (1S)] – M[  b (1S)] = 69.3  2.8 MeV Width of  b (1S): no information pNRQCD: 41  14 MeV Lattice: 60  8 MeV Kniehl et al., PRL92,242001(2004)Meinel, PRD82,114502(2010)

38 Method reconstruct   b (mS)   (5S)  Z b  - +  h b (nP)  + Decay chain Use missing mass to identify signals M(  b ) M(h b ) true  +  - fake  fake  +  - true  true  +  - true  MC simulation  M miss (  +  -  )  M miss (  +  -  ) – M miss (  +  - ) + M[h b ]

39 Method reconstruct   b (mS)   (5S)  Z b  - +  h b (nP)  + Decay chain Use missing mass to identify signals M(  b ) M(h b ) MC simulation  M miss (  +  -  )  M miss (  +  -  ) – M miss (  +  - ) + M[h b ] Approach: fit M miss (  +  - ) spectra in  M miss (  +  -  ) bins  h b (1P) yield vs.  M miss (  +  -  )  search for  b (1S) signal

40 Results  b (1S) 13  potential models :  = 5 – 20 MeV Godfrey & Rosner : BF = 41% BaBar  (3S)   b (1S)  BaBar  (2S) CLEO  (3S) BELLE preliminary pNRQCDLattice arXiv:  M HF [  b (1S)] = 59.3  MeV/c 2 –1.4

41 Observation of two charged bottomonium-like resonances in 5 final states M =  2.0 MeV  = 18.4  2.4 MeV M =  1.5 MeV  = 11.5  2.2 MeV First observation of h b (1P) and h b (2P) Hyperfine splitting consistent with zero, as expected Anomalous production rates arXiv: accepted by PRL arXiv: , arXiv: , submitted to PRL Summary  (1S)π +,  (2S) π +,  (3S)π +, h b (1P)  +, h b (2P)  + Angular analyses favour J P = 1 +, decay pattern  I G = 1 + Masses are close to BB* and B*B* thresholds – molecule? Observation of h b (1P)  b (1S)  The most precise single meas., significantly different from WA, decreases tension w/ theory Will Z b ’s become a key to understanding of all other quarkonium-like states? arXiv: Z b (10610)

42 Back up

43 BsBs Integrated Luminosity at B-factories > 1 ab -1 On resonance:  (5S): 121 fb -1  (4S): 711 fb -1  (3S): 3 fb -1  (2S): 24 fb -1  (1S): 6 fb -1 Off reson./scan : ~100 fb fb -1 On resonance:  (4S): 433 fb -1  (3S): 30 fb -1  (2S): 14 fb -1 Off reson./scan : ~54 fb-1 (fb -1 ) asymmetric e + e - collisions

44  ( 5S ) Belle took data at E=10867  1 MэВ 2M(B s ) BaBar PRL 102, (2009)  ( 6S )  ( 4S ) e + e - hadronic cross-section main motivation for taking data at  (5S)  ( 1S )  ( 2S )  ( 3S )  ( 4S ) 2M(B) e + e - ->  (4S) -> BB, where B is B + or B 0 e + e - -> bb (  (5S)) -> B ( * ) B ( * ), B ( * ) B ( * ) , BB , B s ( * ) B s ( * ),  (1S) ,  X … _ _____

45 Residuals  (1S) Example of fit Description of fit to MM(  +  - ) Three fit regions 123 Ks generic  (3S) kinematic boundary MM(  +  -) M(  +  -) MM(  +  -) BG: Chebyshev polynomial, 6 th or 7 th order Signal: shape is fixed from  +  -  +  - data “Residuals” – subtract polynomial from data points K S contribution: subtract bin-by-bin

46 Why do we think these are h b (nP) and not  b1 (nP) ? Masses are significantly different: The strong decay  (5S)   b1  +  - violates isospin conservation  M(1P) =  5.5  1.6 (3.5  )  M(2P) =  4.3  1.4 (3.2  ) Search in  (4S) data No significant signal of h b (1P):   (4S) does not show anomalous properties L = 711fb -1 [  6  (5S) sample]  [e + e -  h b (1P)  +  -  (4S)  [e + e -  h b (1P)  +  -  (5S) <0.28 at 90%C.L.

47 Confidence Levels of angular fits to  (5S)  Z b +  -  [h b (1P)  + ]  - decay with hypothesis 1+