Feb. 22. 2005 High-resolution Fourier transform emission spectroscopic study of the molecular ions Yoshihiro Nakashima.

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy Leah C. O'Brien and Kaitlin A. Womack, Department of Chemistry, Southern.
Intracavity Laser Absorption Spectroscopy of PtS in the Near Infrared James J. O'Brien University of Missouri – St. Louis and Leah C. O'Brien and Kimberly.
Spectroscopy The Light Spectrum. Vibrational Spectroscopy D(t) r(t) Band structure The higher the BO: i) the deeper the Well, ii) the wider the spacing.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
II. Multi- photon excitation / ionization processes
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Benjamin McCall and Takeshi Oka University of Chicago Therese R. Huet Universite de Lille James K. G. Watson National Research Council of Canada Overtone.
Lecture 3 INFRARED SPECTROMETRY
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2010 Dr. Susan Lait.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
ROTATIONAL AND RENNER-TELLER ANALYSES OF THE GROUND AND EXCITED STATE LEVELS OF THE JET-COOLED CS 2 ION Dennis J. Clouthier & Sheng-Gui He Department of.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
Infrared Diode Laser Spectroscopy of the ν 3 Fundamental Band of the PO 2 Free Radical.
Supersonic Free-jet Quantum Cascade Laser Measurements of 4 for CF 3 35 Cl and CF 3 37 Cl and FTS Measurements from 450 to 1260 cm -1 June 20, 2008 James.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
1 N. NISHIMIYA and T. YUKIYA Tokyo Polytechnic University, Kanagawa, JAPAN. HIGH – RESOLUTION LASER SPECTROSCOPY OF THE A 3 Π 1 ← X 1 Σ + SYSTEM OF ICl.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
1 Intracavity Laser Absorption Spectroscopy of Nickel Fluoride in the Near-Infrared James J. O'Brien Department of Chemistry & Biochemistry University.
Copyright © Professor Sang Kuk Lee, Department of Chemistry, Pusan National University. All rights reserved. 1 The 67 th International Symposium on Molecular.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
Chemistry XXI Unit 2 How do we determine structure? The central goal of this unit is to help you develop ways of thinking that can be used to predict the.
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
Chan Ho Kwon, Hong Lae Kim, and Myung Soo Kim* National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
1.1 What’s electromagnetic radiation
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Anomalous CH Stretch Intensity Effects in Halomethyl Radicals: “Charge-Sloshing” vs. Bond- Dipole Contributions to IR Transition Moments E.S. Whitney,
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University.
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
Infrared Spectroscopy (IR) Fourier Transform Infrared (FTIR)
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
High-Resolution Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer Gottfried and Takeshi Oka University of Chicago Benjamin J.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
Analysis of bands of the 405 nm electronic transition of C3Ar
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
Wendy W. Chen, Thomas C. Galvin, Thomas J. Houlahan, and J. Gary Eden
The Near-IR Spectrum of CH3D
69th annual international symposium on molecular spectroscopy
Jacob T. Stewart and Bradley M
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Bob Grimminger and Dennis Clouthier
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Fourier Transform Emission Spectroscopy of CoH and CoD
Fourier Transform Infrared Spectral
Spectroscopy, Structure, and Ionization Energy of BeOBe
Presentation transcript:

Feb High-resolution Fourier transform emission spectroscopic study of the molecular ions Yoshihiro Nakashima

Contents 1. General introduction 2. B 2  + – X 2  + transition of the PN + ion 3. A 2  – X 2  transition of the OCS + ion 4. A 2  + – X 2  transition of the BrCN + ion

General introduction 1. General introduction 2. B 2  + – X 2  + transition of the PN + ion 3. A 2  – X 2  transition of the OCS + ion 4. A 2  + – X 2  transition of the BrCN + ion Chapter 1

Molecular ion (cationic species) Terrestrial and extraterrestrial environments flame plasma planetary atmosphere comet interstellar space etc…. Protonated ion molecule + proton (H + ) closed shell ex) H 3 O +, NH 4 +, H 3 + … Radical ion ionization of molecule open shell ex) N 2 +, CO 2 +, HCCH + … Spectroscopic study Ion - molecule reaction

Spectroscopic study of the radical ion Photoelectron spectroscopy Laser spectroscopy MPI or REMPI + LIF or photodissociation Cavity ringdown etc… Matrix isolation spectroscopy present study Fourier transform spectrosocpy (FT) Flowing afterglow technique Electronic energy of ion High-sensitive detection

x M1M1 M2M2 B.S. S D Fourier transform spectrosocpy (FTS) Interferogram F(x) F(x)F(x) Spectrum B( ) FT Michelson interferometer x : path difference : wavenumber

Fourier transform spectrosocpy (FTS) High-resolution spectroscopy ( depend on x ) Determination of accurate frequency Wide spectral range ( 10 – 45,000 cm -1 for Brucker IFS120HR ) Low signal to noise ratio Production method of transient species with high concentration and low noise… Flowing afterglow technique

Flowing afterglow Electronic energy level of He He ( 2 1 S ) : eV,  = 19.7 ms eV,  = 19.7 ms He ( 2 3 S ) : eV,  ~ 150 min eV,  ~ 150 min 1eV = kJ/mol D e (N 2 ) = 946 kJ/mol 1 1 S 2 1 S 2 1 P 3 1 S 3 1 P 2 3 S 2 3 P 3 3 S 3 3 P eV HeI metastable The reaction of molecule with metastable

Flowing afterglow Penning ionization He ( 1 1 S )He* ( 2 3 S or 2 1 S) He ( 1 1 S ) He* ( 2 3 S or 2 1 S) He*M*He ( 1 1 S ) He* + M M* + He ( 1 1 S ) M*( M + )*e - M* ( M + )* + e - ( M + )* M + + h ( M + )* M + + h He* + M ( M + )* + He + e - Penning ionization optical spectroscopy ( PIOS ) 1. low noise 2. stable emission 3. selective production of the ion

A 2  – X 2  transition of OCS + 1. General introduction 2. B 2  + – X 2  + transition of the PN + ion 3. A 2  – X 2  transition of the OCS + ion 4. A 2  + – X 2  transition of the BrCN + ion Chapter 3

Introduction R(OC  S) eV X 2X 2 A 2A 2 B 2+B 2+ 44 v = 0 M. J. Hubin-Frank et al. ( MCSCF-CI ) Isovalent with CO 2 + and CS 2 + Predissociation in A 2  1. repulsive 4   2. Internal conversion from A 2  to X 2  Spectroscopic study is few!

Previous works Oschner et al. 1. Oschner et al. (000)  (000) band LIF spectra of the (000)  (000) band  2  3/2  X 2   of the  2  3/2  X 2    transition. Weinkauf and Boesl 3. Weinkauf and Boesl Photodissociation spectra of the (000)  (000) band (000)  (000) band of the  2  1/2  X 2  1/2  2  1/2  X 2  1/2  transition. 4. C. L. Lugez et al. Infrared absorption Infrared absorption spectrum in Ne matrix. 2. Kakoschke et al. Photodissociation spectra of the A 2   X 2  B 2  +  X 2  A 2   X 2  and  B 2  +  X 2   transitions. A 2  X 2  B 2  + 39,180 31,400 0 cm -1  =3/2  =1/2  =3/2  =1/2

Experimental He (2.5 Torr) OCS (2-3 mTorr) resolution : 0.03 cm -1 spectral region : 20,000 – 28,000 cm -1 accumulation time : 60 hrs. Penning ionization He*(2 3 S) + OCS OCS + + He(1 1 S) (I.P.=11.19 eV)

Observed spectrum cm -1 He S+S+ CO + (2,1)CO + (1,0)CO + (2,0) CO + (3,0)CO + (4,0) He OCS +

A 2  – X 2  transition of OCS + (000)-(002)(000)-(003) (000)-(004)(000)-(005) 3 (CO str.) progression 3 (CO str.) progression cm -1

A 2    – X 2    transition P (J’’) R (J’’) FWHM : 0.05 cm -1 T rot : 300 K

A 2    – X 2    transition Q J’’= P J’’= R R R (1.5) and P(2.5) Weak Q branch A 2   – X 2   transition

A 2    – X 2    transition P (J’’) R (J’’) FWHM : 0.05 cm -1 T rot : 300 K

A 2    – X 2    transition  parity + parityJ’’=23.5J’’=26.5  –type doubling A 2   – X 2   transition P-branch

state constant  =3/2  =1/2 A 2  T (25) (99) B (12) (29) 10 7 D (24) p/2 +q  (11) X 2   (80) (30) x (66) y 333  (18)  z (16) B (13) (28) 10 7 D (32) 0.561(21) 10 3  (20) (51) 10 8  (53)  (33) p/2 +q  (10)     Molecular constants (unit : cm -1 )

Discussion parameter X 2  A 2  X 1  +  1 (CS str.) present study  previous study ab initio  3 (CO str.) present study   previous study ab initio Harmonic frequency  1 (CS str.) :  1 = ( 4B e 3 /D e ) 1/2  3 (CO str.) : (  3 3/2 +  3 1/2 )  2

Rotational constants  =3/2  =1/2 Oschner et al Weinkauf and Boesl B 000 = B 000 (1 + B 000 /A) 3/2 B 000 = B 000 (1  B 000 /A) 1/2 B 000 (X) = (15) cm -1 B 000 (A) = (16) cm -1 B 00v = B 000   3 v +  33 v 2 

Spin-orbit interaction constants X 2X 2 A 2A 2 2   2   2   2   B 000 = B 000 (1 + B 000 /A) 3/2 B 000 = B 000 (1  B 000 /A) 1/2 |T 000 – T 000 | = |A’ – A’’| 1/23/2 A (X) =  380.9(66) cm -1 A (A) =  122.2(66) cm -1   (A’ =  111.8) (A’’ =  367.2)

Bond length of OCS + parameter X 2  A 2  X 1  + r CO (A) present study  previous study ab initio a r CS (A) present study  previous study ab initio a a : K. Takeshita et al. (MRSD-CI) (8  ) 2 (9  ) 2 (2  ) 4 (3  ) 3 : X 2  (8  ) 2 (9  ) 2 (2  ) 3 (3  ) 4 : A 2  3  : S 3p (non-bonding) 2  : CO  (bonding)

Summary 1. Ultraviolet emission spectrum of the A 2  - X 2  transition of the OCS + ion was observed by FT spectroscopy. 2. Rotational analysis of the seven bands, A 2  3/2 (000) - X 2   (00v) ( v=0, 2-5 ) and A 2   (000) - X 2   (00v) ( v=3 and 4 ) transitions, were performed to determine the molecular constants. 3. Spin-orbit interaction constants A and the harmonic frequencies  1 and  3 of A 2  and X 2  were determined. 4. The geometrical difference between X 2  and A 2  was indicated, which was explained by the electronic configuration.

A 2  + – X 2  transition of BrCN + 1. General introduction 2. B 2  + – X 2  + transition of the PN + ion 3. A 2  – X 2  transition of the OCS + ion 4. A 2  + – X 2  transition of the BrCN + ion Chapter 4

BrCN + ion Renner-Teller effect Splitting of the vibronic state by the excitation of the bending vibration X 2  Electronic ground state : X 2  spin-orbit interaction Introduction Vibronic interaction

V + = a ( 1 +  ) (  r) 2 + … V - = a ( 1 –  ) (  r) 2 + … |  |<1|  |>1 NCO, N 2 O + ( X 2  ) NH 2 ( X 2 B 1, A 2  )  : Renner parameter Bending potential function

Large spin-orbit interaction A =  1477 cm cm -1 Introduction spin-orbit interaction Influence of the spin-orbit interaction Renner-Teller effect on the Renner-Teller effect  2 = (20) cm cm -1

Previous works 2. M. A. Hanratty et al. B 2  3/2  X 2  3/2 LIF spectra of the B 2  3/2  X 2  3/2 transition 4. C. Salud et al. Infrared diode laser spectroscopy 1 (CN str.) fundamental band of the 1 (CN str.) fundamental band X 2  3/2 of the X 2  3/2  state 1. J.Fulara et al. Low-resolution emission spectra B 2  3/2  X 2  3/2 of the B 2  3/2  X 2  3/2 and A 2    X 2  A 2    X 2  transitions A 2  + X 2   B 2   0 13,700 19,230 cm -1 (001) (002) (012) (100) 3. M. Rosslein et al. LIF spectra of the B 2  3/2  X 2  3/2 transition to determine the r s -structure r s -structure of BrCN +

Experimental He (1.0 Torr) BrCN (2-3 mTorr) resolution : 0.02 cm -1 spectral region : 11,500 – 15,000 cm -1 accumulation time : 40 hrs. Penning ionization He*(2 3 S) + BrCN BrCN + + He(1 1 S) (I.P.=12.08 eV)

Observed spectrum ( A 2  + - X 2   ) (010)-(000) (010)-(010) (000)-(000) (001)-(011) (000)-(010) (010)-(001) (100)-(100) (001)-(001) (000)-(100)  =3/2  =1/2 (000)-(000) (010)-(010) (001)-(001) (000)-(010)

A 2  + (000) - X 2  3/2 (000) transition P1P1 R 21 P 21 + Q 1 R 1 + Q 21

A 2  + (000) - X 2  3/2 (000) transition P 1 branch 79 BrCN + J’’=35.5J’’= BrCN + J’’=35.5J’’=39.5

A 2  + (000) - X 2  1/2 (000) transition P 2 + Q 12 R 12 + Q 2 P 12 R2R2

Molecular constants (unit : cm -1 ) state constant FT + D.L. D.L. LIF A 2  + 3/ (13) B (51) 10 7 D 0.346(16)  (37) X 2   B 3/ (47) (41) (47) 10 7 D 0.307(15) 0.158(23) 0.86(28) state constant FT + D.L. D.L. LIF A 2  + 3/ (13) B (50) 10 7 D 0.299(16)  (37) X 2   B 3/ (47) (11) (86) 10 7 D 0.262(14) 0.147(60) 1.5(56) 79 BrCN + 81 BrCN + eff A 2  + (000) – X 2  3/2 (000) transition

Molecular constants (unit : cm -1 ) state constant 79 BrCN + 81 BrCN + A 2  + 1/ (46) (59) B a a 10 7 D a a  a  a X 2   B 1/ (62) (67) 10 7 D 0.347(11) 0.214(16) p/2 + q (11) (15) eff 79 B 000 = (32) cm B 000 = (41) cm -1 Rotational constant B 000 B 3/2 = B 000 ( 1 + B 000 /A ) B 1/2 = B 000 ( 1  B 000 /A ) eff A 2  + (000) – X 2  1/2 (000) transition

Spin-orbit interaction constant A = 1/2 – 3/2 79 A =  (48) cm A =  (60) cm -1 X 2  (000) A 2  + (000) X 2   X 2   3/2 1/2 A low resolution emission spectroscopy A =  1477 cm -1

r 0 -structure I =  m k z k 2 0 =  m k z k  I = z Br 2  m Br  m k  m Br +  m k BrCN × z Br zCzC zNzN G species electronic state r BrC r CN BrCN X 1  BrCN + X 2  1.788(54) 1.103(78) 1.745(7) 1.195(8) A 2  (61) 1.064(90) unit : A

A 2  + -  2  transition P2P2 R2R2 P 12 R 12

A 2  + -  2  transition P1P1 R1R1 P 21 R 21

Molecular constants (unit : cm -1 ) state constant 79 BrCN + 81 BrCN + A 2  +  (12) (17) B a a 10 7 D a a  a  a  2  B  (19) (26) 10 7 D (60) (79) p  (27)  (32) A 2  + -  2  state constant 79 BrCN + 81 BrCN + A 2  +  (21) (25) B a a 10 7 D a a  a  a  2  B  (25) (28) 10 7 D (58) (66) p  (46)  (52) A 2  + -  2 

A 2  + (000) X 2  (010)  2 2  2 2 2r2r Discussion Rotational constants B B 010 = (23) cm B 010 = (25) cm -1 B  = B 010  [ (B 010 –  /2) cos 2  ] 2 /2r B  = B 010  [ (B 010 –  /2) cos 2  ] 2 /2r  : spin-rotation interaction constant Parameter r 2r = [ A eff 2 + 4(  2 ) 2 ] 1/2 =  -  2 79 r = (24) cm r = (30) cm -1  

Renner parameter p = 2B 010 sin 2  p = 2B 010 sin 2  = 4B 010  2 /2r = 4B 010  2 /2r state constant 79 BrCN + 81 BrCN +  2  p  (27)  (32)  2  p  (46)  (52) B (23) (25) 2r (24) (30)  (20) 79  =  (27) 81  =  (32)  : Renner parameter p :  –  type doubling constant p :  –  type doubling constant BO 2 (X 2  )  =  0.19 CO 2 + (X 2  u )  =  0.190

Wave fuctions of  2  and  2  Wave fuctions of  2  and  2  sin 2  =  2 /2cos 2  = A eff /2 sin 2  : cos 2  = : Large spin-orbit interaction !

Summary 1. Near-infrared emission spectrum of the A 2  + - X 2  transition of the BrCN + ion was observed by FT spectroscopy. 2. Rotational analysis of the four bands, A 2  + (000) - X 2   (000) (  =3/2 and 1/2 ) A 2  + (000) -  2  and A 2  + (000) -  2 , was performed to determine the molecular constants. 3. The r 0 -structures of BrCN + were obtained and geometrical difference between BrCN and BrCN + was small. 4. Renner parameter was determined to be  =  0.185, and the influence of the Renner-Teller effect on X 2  was turned out to be small due to the large spin-orbit interaction.

Conclusion 2. Electronic transitions of linear triatomic radical cations were observed by FT spectroscopy. 1. Fourier Transform spectroscopy was combined with flowing afterglow technique to detect the polyatomic radical cation. 3. Accurate molecular constants were determined by the analysis of the observed vibronic bands. 5. The analysis of the Renner-Teller effect was accomplished. 4. Bond lengths and the harmonic frequencies of the ions were derived from the molecular constants.

Future works 3. Vibrational transition of the ionic or radical species 1. Detection of the radical species ArF excimer laser (193 nm) = 6.42 eV N 2 *( A 3  + ) = 6.22 eV,  =1.36 sec. Fe(CO) 5 + h (193 nm) FeCO 2. Detection of the triplet state of the molecule Hg* ( 3 P ) = 5.46 eV HCCH + Hg* ( 3 P ) HCCH* + Hg ( 1 S ) Emission or absorption spectrum of the transient species

B 2  + – X 2  + transition of PN + 1. General introduction 2. B 2  + – X 2  + transition of the PN + ion 3. A 2  – X 2  transition of the OCS + ion 4. A 2  + – X 2  transition of the BrCN + ion Chapter 2

Introduction PN + ion Isovalent with N 2 + and P 2 + Shallow well of the potential energy curve in B 2  + Interstellar species r V 3 2   + B 2  + C 2  + Avoided crossing ?

A 2  X 2  + B 2  eV Previous works Obase et al. low-resolution emission spectrum of the B 2  + - X 2  + transition Ahmad and Hamilton medium-resolution emission spectrum of the B 2  + - X 2  + transition Imajo et al. high-resolution FT emission spectrum of the B 2  + (v=0) - X 2  + (v=0) band In the present study high-resolution FT emission spectrum high-resolution FT emission spectrum of the B 2  + (v’) - X 2  + (v’’) of the B 2  + (v’) - X 2  + (v’’) (v=0 and 1) band (v=0 and 1) band v=1 v=2 v=3 v=1 v=2 v=3

Experimental water pump Audio AMP. (1 kW) transformer (1:30) 3 k  He 75 kHz Quartz lends ( f = 50 mm ) (PNCl 2 ) 3 Heat resolution : 0.05 cm -1 spectral region : 31,700 – 50 cm -1 : 29,700 – 50 cm -1 accumulation time : 8 hrs. + +

B 2  + (v = 1) - X 2  + (v = 0) transition B 2  + (v = 1) - X 2  + (v = 0) transition N’’= P (N’’) R (N’’)

B 2  + (v = 0) - X 2  + (v = 1) transition N’’= P (N’’) R (N’’) 30

B 2  + (v = 0) - X 2  + (v = 1) transition P 1 (N’’) P 2 (N’’)

Molecular constants (unit : cm -1 ) state constant present study Ahmad and Hamilton B 2  + T e (14) (28)  e (10) 720.8(14)  e x e 1.80 B e (42) (28) 10 2  e (29) 2.4(7) 10 5 D e (28)  e  (15) X 2  +  e (39) (18)  e x e 7.62 B e (87) (28) 10 2  e (55) 1.5(12) 10 5 D e (40)  e (25)

Discussion Bond strength in B 2  + becomes weak ! Dissociation energy (eV) De =  e 2 /4  e x e state present study previous works B 2  (99) 3.1 X 2  (27) 4.96 incorrect values of  e x e ? parameter X 2  + B 2  + r e (A) (81) (45) k (N/m) (58) (82)

Potential energy curves Potential energy function V = T e + k/2(r  r e ) 2 + a(r  r e ) 3 + … V’ = D e [ 1 – exp(  (r  r e ) ) ] 2 Morse function Shallow well of the potential energy curve in B 2  +

Comparison with N 2 + and PN + Bond strength N 2 + : X 2  + g < B 2  + u PN + : X 2  + > B 2  + parameter X 2  + (g) B 2  + (u) r e (A) N PN P k (N/m) N PN P 2 + 

Electronic configuration PN + ion N 2 + ion Avoided crossing (6  *) 1 (2  ) 4 (7  ) 2 strong bond (6  *) 2 (2  ) 3 (7  ) 1 (3  *) 1 weak bond Bond strength in B 2  + of PN + becomes weak (4  *) 1 (1  ) 4 (5  ) 2 B 2  + u (strong bond) (4  *) 2 (1  ) 3 (5  ) 1 (2  *) 1 C 2  + u (weak bond) Bond strength in B 2  + u of N 2 + becomes strong 40,000 cm -1 <

Rotational perturbation Residuals in the least squares fitting of the (0-0) band

Rotational perturbation Residuals in the least squares fitting of the (0-1) band

B 2  + (v = 0) - X 2  + (v = 1) transition P 1 (N’’) P 2 (N’’)

Rotational perturbation Residuals in the least squares fitting of the (1-0) band

Summary 1. Ultraviolet emission spectrum of the B 2  + - X 2  + transition of the PN + ion was observed by FT spectruscopy. 2. Rotational analysis for the three vibronic bands, (1-0), (0-1), and (0-0), were performed to determined the molecular consants. 3. Potential energy curves for X 2  + and B 2  + were determined and the potential energy of B 2  + was confirmed to have a shallow well. 4. The molecular constants of B 2  + of PN + are different from those of N 2 + due to the difference of the electronic configuration of B 2  Rotational perturbations in the B 2  + vibronic states were observed.

Observed spectrum Nine vibronic bands of the A 2  + - X 2   transition Four vibronic bands of the A 2  + - X 2   transition A 2  + X 2  (000) (100) (010) (001) (100) (010) (001) 22 22 2   2   0 1,000 2,000 3,000 13,697 cm -1

Centrifugal disotortion constant D in X 2  3/2 D e = 4B e 3 /  e 2

Electronic configuration (3  ) 2 (1  ) 4 (4  ) 2 (2  ) 4 : BrCN (X 1  + ) (3  ) 2 (1  ) 4 (4  ) 2 (2  ) 3 : BrCN + (X 2  ) (3  ) 2 (1  ) 4 (4  ) 1 (2  ) 4 : BrCN + (A 2  + ) 2  : p (Br) –  (CN) 4  : p z (N) (non-bonding) Geometrical difference is small !

Renner parameter species A eff  2  79 BrCN +   (70)  (27) BO 2   86.4  0.19 CNC CO 2 +   96.8  NCO   76  0.14 N 2 O +   79.7 